Multiplicateur de FourierEn théorie de Fourier, un multiplicateur est un type d'opérateur linéaire ou de transformation de fonctions. Ces opérateurs agissent sur une fonction en modifiant sa transformée de Fourier. Plus précisément, ils multiplient la transformée de Fourier d'une fonction par une fonction choisie connue sous le nom de multiplicateur ou symbole. Parfois, le terme opérateur multiplicateur lui-même est simplement abrégé en multiplicateur. En termes simples, le multiplicateur déforme les fréquences impliquées dans toute fonction.
Équations de Lagrangevignette|Joseph-Louis Lagrange Les équations de Lagrange, découvertes en 1788 par le mathématicien Joseph-Louis Lagrange, sont une reformulation de la mécanique classique. Il s'agit d'une reformulation de l'équation de Newton, qui ne fait pas intervenir les forces de réaction. Pour cela, on exprime les contraintes que subit la particule étudiée sous la forme d'équations du type : Il n'y a qu'une équation si le mouvement est contraint à une surface, deux s'il est contraint à une courbe.
Polynôme de BernsteinLes polynômes de Bernstein, nommés ainsi en l'honneur du mathématicien russe Sergueï Bernstein (1880-1968), permettent de donner une démonstration constructive et probabilistedu théorème d'approximation de Weierstrass. Ils sont également utilisés dans la formulation générale des courbes de Bézier. Pour un degré m ≥ 0, il y a m + 1 polynômes de Bernstein B, ..., B définis, sur l'intervalle [0 ; 1], par où les sont les coefficients binomiaux. Les m + 1 polynômes de Bernstein forment une base de l'espace vectoriel des polynômes de degré au plus m.
Division d'un polynômeEn algèbre, l'anneau K[X] des polynômes à une indéterminée X et à coefficients dans un corps commutatif K, comme celui des nombres rationnels, réels ou complexes, dispose d'une division euclidienne, qui ressemble formellement à celle des nombres entiers. Si A et B sont deux polynômes de K[X], avec B non nul, il existe un unique couple (Q, R) de polynômes de K[X] tel que : Ici l'expression deg S, si S désigne un polynôme, signifie le degré de S.
Méthode de GalerkineEn mathématiques, dans le domaine de l'analyse numérique, les méthodes de Galerkine sont une classe de méthodes permettant de transformer un problème continu (par exemple une équation différentielle) en un problème discret. Cette approche est attribuée aux ingénieurs russes Ivan Boubnov (1911) et Boris Galerkine (1913). Cette méthode est couramment utilisée dans la méthode des éléments finis. On part de la formulation faible du problème. La solution appartient à un espace fonctionnel satisfaisant des propriétés de régularité bien définies.
Couplage croiséEn chimie organique, un couplage croisé est une réaction de couplage entre deux fragments moléculaires par formation d'une liaison carbone-carbone sous l'effet d'un catalyseur organométallique. Par exemple, un composé , où R est un fragment organique et M un métal du groupe principal, réagit avec un halogénure organique , où X est un halogène, pour former un produit . Les chimistes Richard Heck, Ei-ichi Negishi et Akira Suzuki ont reçu le prix Nobel de chimie 2010 pour avoir développé des réactions de couplage catalysées au palladium.
Analyse numériqueL’analyse numérique est une discipline à l'interface des mathématiques et de l'informatique. Elle s’intéresse tant aux fondements qu’à la mise en pratique des méthodes permettant de résoudre, par des calculs purement numériques, des problèmes d’analyse mathématique. Plus formellement, l’analyse numérique est l’étude des algorithmes permettant de résoudre numériquement par discrétisation les problèmes de mathématiques continues (distinguées des mathématiques discrètes).
Simulation informatiquevignette|upright=1|Une simulation informatique, sur une étendue de , de l'évolution du typhon Mawar produite par le Modèle météorologique Weather Research and Forecasting La simulation informatique ou numérique est l'exécution d'un programme informatique sur un ordinateur ou réseau en vue de simuler un phénomène physique réel et complexe (par exemple : chute d’un corps sur un support mou, résistance d’une plateforme pétrolière à la houle, fatigue d’un matériau sous sollicitation vibratoire, usure d’un roulem
Factorization of polynomials over finite fieldsIn mathematics and computer algebra the factorization of a polynomial consists of decomposing it into a product of irreducible factors. This decomposition is theoretically possible and is unique for polynomials with coefficients in any field, but rather strong restrictions on the field of the coefficients are needed to allow the computation of the factorization by means of an algorithm. In practice, algorithms have been designed only for polynomials with coefficients in a finite field, in the field of rationals or in a finitely generated field extension of one of them.
Dualité (optimisation)En théorie de l'optimisation, la dualité ou principe de dualité désigne le principe selon lequel les problèmes d'optimisation peuvent être vus de deux perspectives, le problème primal ou le problème dual, et la solution du problème dual donne une borne inférieure à la solution du problème (de minimisation) primal. Cependant, en général les valeurs optimales des problèmes primal et dual ne sont pas forcément égales : cette différence est appelée saut de dualité. Pour les problèmes en optimisation convexe, ce saut est nul sous contraintes.