Generalized least squaresIn statistics, generalized least squares (GLS) is a method used to estimate the unknown parameters in a linear regression model when there is a certain degree of correlation between the residuals in the regression model. Least squares and weighted least squares may need to be more statistically efficient and prevent misleading inferences. GLS was first described by Alexander Aitken in 1935. In standard linear regression models one observes data on n statistical units.
Méthode des moindres carrés ordinairevignette|Graphique d'une régression linéaire La méthode des moindres carrés ordinaire (MCO) est le nom technique de la régression mathématique en statistiques, et plus particulièrement de la régression linéaire. Il s'agit d'un modèle couramment utilisé en économétrie. Il s'agit d'ajuster un nuage de points selon une relation linéaire, prenant la forme de la relation matricielle , où est un terme d'erreur.
AutocorrélationL'autocorrélation est un outil mathématique souvent utilisé en traitement du signal. C'est la corrélation croisée d'un signal par lui-même. L'autocorrélation permet de détecter des régularités, des profils répétés dans un signal comme un signal périodique perturbé par beaucoup de bruit, ou bien une fréquence fondamentale d'un signal qui ne contient pas effectivement cette fondamentale, mais l'implique avec plusieurs de ses harmoniques. Note : La confusion est souvent faite entre l'auto-covariance et l'auto-corrélation.
Vecteur euclidienEn mathématiques, et plus précisément en géométrie euclidienne, un vecteur euclidien est un objet géométrique possédant une direction, un sens et une norme. On l'utilise par exemple en physique et en ingénierie pour modéliser une force. On parle aussi parfois de vecteur géométrique dans le plan euclidien (deux dimensions) et de vecteur spatial dans l'espace à trois dimensions. Vecteur#HistoireVecteur En physique et en ingénierie, on travaille souvent dans l'espace euclidien.
Interactions homme-machinethumb|Personne plongée dans la réalité virtuelle grâce à un visiocasque et un gant électronique. thumb|L'interface homme-machine d'un des ordinateurs de bord des missions Apollo. L'interaction Homme-machine (ou interaction humain-machine), appelée IHM, s’intéresse à la conception et au développement de systèmes interactifs en prenant en compte ses impacts sociétaux et éthiques. Les humains interagissent avec les ordinateurs qui les entourent et cette interaction nécessite des interfaces qui facilitent la communication entre l'humain et la machine.
Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Filtre (audio)Dans le traitement du signal, un filtre est un appareil ou une fonction servant à retirer ou bien à accentuer ou réduire certaines parties du spectre sonore représentées dans un signal. Les filtres sont essentiels dans plusieurs fonctions des appareils électroniques (voir Filtre (électronique)). Nous ne traiterons ici que des filtres accessibles par des commandes dans les tranches des consoles de mixage et les égaliseurs qui permettent d'ajuster la tonalité des sons.
Processeur de signal numériqueUn DSP (de l'anglais « Digital Signal Processor », qu'on pourrait traduire par « processeur de signal numérique » ou « traitement numérique de signal ») est un microprocesseur optimisé pour exécuter des applications de traitement numérique du signal (filtrage, extraction de signaux) le plus rapidement possible. Les DSP sont utilisés dans la plupart des applications du traitement numérique du signal en temps réel. On les trouve dans les modems (modem RTC, modem ADSL), les téléphones mobiles, les appareils multimédia (lecteur MP3), les récepteurs GPS.
Quantification vectorielleLa quantification vectorielle est une technique de quantification souvent utilisée dans la compression de données avec pertes de données (Lossy Data Compression) pour laquelle l'idée de base est de coder ou de remplacer par une clé des valeurs d'un espace vectoriel multidimensionnel vers des valeurs d'un sous-espace discret de plus petite dimension. Le vecteur de plus petit espace nécessite moins d'espace de stockage et les données sont donc compressées.
Bayes estimatorIn estimation theory and decision theory, a Bayes estimator or a Bayes action is an estimator or decision rule that minimizes the posterior expected value of a loss function (i.e., the posterior expected loss). Equivalently, it maximizes the posterior expectation of a utility function. An alternative way of formulating an estimator within Bayesian statistics is maximum a posteriori estimation. Suppose an unknown parameter is known to have a prior distribution .