Anneau de BooleUn anneau de Boole (ou Algèbre de Boole), est un anneau unitaire (E, +, •, 0, 1) dans lequel tout élément a vérifie la relation a•a = a. Il découle immédiatement de la définition qu'un anneau de Boole est commutatif et que chaque élément est son propre opposé (en calculant le carré de x + 1, puis celui de x + y). En un sens qui peut être rendu précis, les anneaux de Boole sont les algèbres de Boole présentées autrement.
Arbre couvrant de poids minimalthumb|L'arbre couvrant de poids minimal d'un graphe planaire. Chaque arête est identifiée avec son poids qui, ici, est approximativement sa longueur. En théorie des graphes, étant donné un graphe non orienté connexe dont les arêtes sont pondérées, un arbre couvrant de poids minimal (ACM), arbre couvrant minimum ou arbre sous-tendant minimum de ce graphe est un arbre couvrant (sous-ensemble qui est un arbre et qui connecte tous les sommets ensemble) dont la somme des poids des arêtes est minimale (c'est-à-dire de poids inférieur ou égal à celui de tous les autres arbres couvrants du graphe).
Fonction elliptique de JacobiEn mathématiques, les fonctions elliptiques de Jacobi sont des fonctions elliptiques d'une grande importance historique. Introduites par Carl Gustav Jakob Jacobi vers 1830, elles ont des applications directes, par exemple dans l'équation du pendule. Elles présentent aussi des analogies avec les fonctions trigonométriques, qui sont mises en valeur par le choix des notations sn et cn, qui rappellent sin et cos. Si les fonctions elliptiques thêta de Weierstrass semblent mieux adaptées aux considérations théoriques, les problèmes physiques pratiques font plus appel aux fonctions de Jacobi.
Logic optimizationLogic optimization is a process of finding an equivalent representation of the specified logic circuit under one or more specified constraints. This process is a part of a logic synthesis applied in digital electronics and integrated circuit design. Generally, the circuit is constrained to a minimum chip area meeting a predefined response delay. The goal of logic optimization of a given circuit is to obtain the smallest logic circuit that evaluates to the same values as the original one.
Fonction circulaire réciproqueLes fonctions circulaires réciproques, ou fonctions trigonométriques inverses, sont les fonctions réciproques des fonctions circulaires, pour des intervalles de définition précis. Les fonctions réciproques des fonctions sinus, cosinus, tangente, cotangente, sécante et cosécante sont appelées arc sinus, arc cosinus, arc tangente, arc cotangente, arc sécante et arc cosécante. Les fonctions circulaires réciproques servent à obtenir un angle à partir de l'une quelconque de ses lignes trigonométriques, mais aussi à expliciter les primitives de certaines fonctions.
Synthèse logiqueEn électronique, la synthèse logique (RTL synthesis) est la traduction d'une forme abstraite de description du comportement d'un circuit (voir Register Transfer Level) en sa réalisation concrète sous forme de portes logiques. Le point de départ peut être un langage de description de matériel comme VHDL ou Verilog, un schéma logique du circuit. D'autres sources sont venues s'additionner depuis les années 2010, comme l'utilisation de la programmation en OpenCL. Le point d'arrivée peut être un code objet pour un CPLD ou FPGA ou la création d'un ASIC.
Euclidean minimum spanning treeA Euclidean minimum spanning tree of a finite set of points in the Euclidean plane or higher-dimensional Euclidean space connects the points by a system of line segments with the points as endpoints, minimizing the total length of the segments. In it, any two points can reach each other along a path through the line segments. It can be found as the minimum spanning tree of a complete graph with the points as vertices and the Euclidean distances between points as edge weights.
Parité d'une fonctionEn mathématiques, la parité d'une fonction d'une variable réelle, complexe ou vectorielle est une propriété qui requiert d'abord la symétrie du domaine de définition par rapport à l'origine, puis s'exprime par l'une ou l'autre des relations suivantes : fonction paire : pour tout x du domaine de définition, f (−x) = f (x) ; fonction impaire : pour tout x du domaine de définition, f (−x) = −f (x).
Fonction lemniscatiqueEn mathématiques, les fonctions lemniscatiques sont des fonctions elliptiques liées à la longueur d'arc d'une lemniscate de Bernoulli ; ces fonctions ont beaucoup d'analogies avec les fonctions trigonométriques. Elles ont été étudiées par Giulio Fagnano en 1718 ; leur analyse approfondie, et en particulier la détermination de leurs périodes, a été obtenue par Carl Friedrich Gauss en 1796. Ces fonctions ont un réseau de périodes carré, et sont étroitement reliées à la fonction elliptique de Weierstrass dont les invariants sont g2 = 1 et g3 = 0.
Formule propositionnelleEn logique mathématique une proposition, ou formule propositionnelle, ou expression propositionnelle est une expression construite à partir de connecteurs et de variables propositionnelles. En logique propositionnelle classique, une formule propositionnelle, ou expression propositionnelle, est une formule bien formée qui possède une valeur de vérité. Si les valeurs de toutes les variables propositionnelles dans une formule propositionnelle sont données, une unique valeur de vérité peut être déterminée.