Théorie de la fonctionnelle de la densitéLa théorie de la fonctionnelle de la densité (DFT, sigle pour Density Functional Theory) est une méthode de calcul quantique permettant l'étude de la structure électronique, en principe de manière exacte. Au début du , il s'agit de l'une des méthodes les plus utilisées dans les calculs quantiques aussi bien en physique de la matière condensée qu'en chimie quantique en raison de son application possible à des systèmes de tailles très variées, allant de quelques atomes à plusieurs centaines.
Modèle de l'électron libreEn physique du solide, le modèle de l'électron libre est un modèle qui sert à étudier le comportement des électrons de valence dans la structure cristalline d'un solide métallique. Ce modèle, principalement développé par Arnold Sommerfeld, associe le modèle de Drude aux statistiques de Fermi-Dirac (mécanique quantique). Électron Particule dans réseau à une dimension 2.4 Modèle de sommerfeld ou de l'électron libre dans un puits de potentiel, sur le site garmanage.com Catégorie:Physique du solide Catégorie:É
Densité de chargeLa densité de charge électrique désigne la quantité de charge électrique par unité d'espace. Selon que l'on considère un problème à 1, 2 ou 3 dimensions, c'est-à-dire une ligne, une surface ou un volume, on parlera de densité linéique, surfacique ou volumique de charge. Leurs unités sont respectivement le coulomb par mètre (), le coulomb par mètre carré () et le coulomb par mètre cube () dans le Système international. Comme il existe des charges négatives comme des charges positives, la densité de charge peut prendre des valeurs négatives.
Régression (statistiques)En mathématiques, la régression recouvre plusieurs méthodes d’analyse statistique permettant d’approcher une variable à partir d’autres qui lui sont corrélées. Par extension, le terme est aussi utilisé pour certaines méthodes d’ajustement de courbe. En apprentissage automatique, on distingue les problèmes de régression des problèmes de classification. Ainsi, on considère que les problèmes de prédiction d'une variable quantitative sont des problèmes de régression tandis que les problèmes de prédiction d'une variable qualitative sont des problèmes de classification.
Régression linéaireEn statistiques, en économétrie et en apprentissage automatique, un modèle de régression linéaire est un modèle de régression qui cherche à établir une relation linéaire entre une variable, dite expliquée, et une ou plusieurs variables, dites explicatives. On parle aussi de modèle linéaire ou de modèle de régression linéaire. Parmi les modèles de régression linéaire, le plus simple est l'ajustement affine. Celui-ci consiste à rechercher la droite permettant d'expliquer le comportement d'une variable statistique y comme étant une fonction affine d'une autre variable statistique x.
Densité d'états électroniquesEn physique du solide et physique de la matière condensée, la densité d'états électroniques, en anglais Density of States ou DOS, quantifie le nombre d'états électroniques susceptibles d’être occupés, et possédant une énergie donnée dans le matériau considéré. Elle est généralement notée par l'une des lettres g, ρ, D, n ou N. Plus précisément, on définit la densité d'états par le fait que est le nombre d'états électroniques disponibles, avec une énergie comprise entre et , par unité de volume du solide ou par maille élémentaire du cristal étudié.
Densité électroniqueright|thumb|300px|Carte de densité électronique dans le plan [1-10] du diamant. En mécanique quantique, et en particulier en chimie quantique, la densité électronique correspondant à une fonction d'onde N-électronique est la fonction monoélectronique donnée par : Dans le cas où est un déterminant de Slater constitué de N orbitales de spin : La densité électronique à deux électrons est donnée par : Ces quantités sont particulièrement importantes dans le contexte de la théorie de la fonctionnelle de la densité : Les coordonnées x utilisées ici sont les coordonnées spin-spatiales.
Régression logistiqueEn statistiques, la régression logistique ou modèle logit est un modèle de régression binomiale. Comme pour tous les modèles de régression binomiale, il s'agit d'expliquer au mieux une variable binaire (la présence ou l'absence d'une caractéristique donnée) par des observations réelles nombreuses, grâce à un modèle mathématique. En d'autres termes d'associer une variable aléatoire de Bernoulli (génériquement notée ) à un vecteur de variables aléatoires . La régression logistique constitue un cas particulier de modèle linéaire généralisé.
Interaction protéine-protéinethumb|upright=1.2|L'inhibiteur de la ribonucléase en forme de fer à cheval (en représentation « fil de fer ») forme une interaction protéine–protéine avec la protéine de la ribonucléase. Les contacts entre les deux protéines sont représentés sous forme de taches colorées. Une Interaction protéine–protéine apparait lorsque deux ou plusieurs protéines se lient entre elles, le plus souvent pour mener à bien leur fonction biologique.
Robust regressionIn robust statistics, robust regression seeks to overcome some limitations of traditional regression analysis. A regression analysis models the relationship between one or more independent variables and a dependent variable. Standard types of regression, such as ordinary least squares, have favourable properties if their underlying assumptions are true, but can give misleading results otherwise (i.e. are not robust to assumption violations).