Régularisation (mathématiques)vignette|Les courbes bleues et vertes correspondent à deux modèles differents, tous les deux étant des solutions possibles du problème consistant à décrire les coordonnées de tous les points rouges. L'application d'une régularisation favorise le modèle moins complexe correspondant à la courbe verte. Dans le domaine des mathématiques et des statistiques, et plus particulièrement dans le domaine de l'apprentissage automatique, la régularisation fait référence à un processus consistant à ajouter de l'information à un problème, s'il est mal posé ou pour éviter le surapprentissage.
Dérivée logarithmiqueEn mathématiques et plus particulièrement en analyse et en analyse complexe, la dérivée logarithmique d'une fonction f dérivable ne s'annulant pas est la fonction : où f est la dérivée de f. Lorsque la fonction f est à valeurs réelles strictement positives, la dérivée logarithmique coïncide avec la dérivée de la composée de f par la fonction logarithme ln, comme le montre la formule de la dérivée d'une composée de fonctions.
Complemented subspaceIn the branch of mathematics called functional analysis, a complemented subspace of a topological vector space is a vector subspace for which there exists some other vector subspace of called its (topological) complement in , such that is the direct sum in the category of topological vector spaces. Formally, topological direct sums strengthen the algebraic direct sum by requiring certain maps be continuous; the result retains many nice properties from the operation of direct sum in finite-dimensional vector spaces.
Logarithmevignette|Tracés des fonctions logarithmes en base 2, e et 10. En mathématiques, le logarithme (de logos : rapport et arithmos : nombre) de base d'un nombre réel strictement positif est la puissance à laquelle il faut élever la base pour obtenir ce nombre. Dans le cas le plus simple, le logarithme compte le nombre d'occurrences du même facteur dans une multiplication répétée : comme 1000 = 10×10×10 = 10, le logarithme en base 10 de 1000 est 3. Le logarithme de en base est noté : . John Napier a développé les logarithmes au début du .
Log semiringIn mathematics, in the field of tropical analysis, the log semiring is the semiring structure on the logarithmic scale, obtained by considering the extended real numbers as logarithms. That is, the operations of addition and multiplication are defined by conjugation: exponentiate the real numbers, obtaining a positive (or zero) number, add or multiply these numbers with the ordinary algebraic operations on real numbers, and then take the logarithm to reverse the initial exponentiation. Such operations are also known as, e.
Endomorphisme normalUn endomorphisme normal est un opérateur d'un espace de Hilbert qui commute avec son adjoint. Soient H un espace de Hilbert (réel ou complexe) et u un endomorphisme de H, d'adjoint u*. On dit que u est normal si Les endomorphismes autoadjoints sont normaux (cas u* = u). Les endomorphismes antiautoadjoints sont normaux (cas u* = –u). Les isométries vectorielles sont des endomorphismes normaux (cas u* = u).
Convergence uniformeLa convergence uniforme d'une suite de fonctions est une forme de convergence plus exigeante que la convergence simple. La convergence devient uniforme quand toutes les suites avancent vers leur limite respective avec une sorte de « mouvement d'ensemble ». Dans le cas de fonctions numériques d'une variable, la notion prend une forme d'« évidence » géométrique : le graphe de la fonction f se « rapproche » de celui de la limite. Soient X un ensemble, (Y, d) un espace métrique, et A un sous-ensemble de X.
Espace régulierEn mathématiques, un espace régulier est un espace topologique vérifiant les deux conditions de séparation suivantes : T : l'espace est séparé ; T : on peut séparer un point x et un fermé ne contenant pas x par deux ouverts disjoints. vignette|Le point x et le fermé F sont respectivement inclus dans les ouverts U et V, qui sont disjoints. Soit E un espace topologique (non nécessairement séparé).
Convergence absolueEn mathématiques, une série numérique réelle ou complexe converge absolument si, par définition, la série des valeurs absolues (ou des modules) est convergente. Cette définition peut être étendue aux séries à valeurs dans un espace vectoriel normé et complet, soit un espace de Banach. Dans tous ces contextes, cette condition est suffisante pour assurer la convergence de la série elle-même. Par analogie, l'intégrale d'une fonction à valeurs réelles ou complexes converge absolument si, par définition, l'intégrale de la valeur absolue (ou du module) de la fonction est convergente (fonction dans L1).
Complément orthogonalEn mathématiques, plus précisément en algèbre linéaire et en analyse fonctionnelle, le complément orthogonal W d'un sous-espace vectoriel W d'un espace préhilbertien V est l'ensemble des vecteurs de V qui sont orthogonaux à tout vecteur de W, c'est-à-dire Le complément orthogonal est toujours un sous-espace vectoriel fermé. Pour un espace de Hilbert, d'après le théorème du supplémentaire orthogonal, le complément orthogonal du complément orthogonal de W est l'adhérence de W, soit File:Orthogonal1.