Total least squaresIn applied statistics, total least squares is a type of errors-in-variables regression, a least squares data modeling technique in which observational errors on both dependent and independent variables are taken into account. It is a generalization of Deming regression and also of orthogonal regression, and can be applied to both linear and non-linear models. The total least squares approximation of the data is generically equivalent to the best, in the Frobenius norm, low-rank approximation of the data matrix.
Projecteur (mathématiques)En algèbre linéaire, un projecteur (ou une projection) est une application linéaire qu'on peut présenter de deux façons équivalentes : une projection linéaire associée à une décomposition de E comme somme de deux sous-espaces supplémentaires, c'est-à-dire qu'elle permet d'obtenir un des termes de la décomposition correspondante ; une application linéaire idempotente : elle vérifie p = p. Dans un espace hilbertien ou même seulement préhilbertien, une projection pour laquelle les deux supplémentaires sont orthogonaux est appelée projection orthogonale.
Sous-espace stableEn algèbre linéaire, un endomorphisme laisse stable un sous-espace vectoriel F quand les éléments de F ont pour image un élément de F. La recherche de sous-espaces stables est étroitement liée à la théorie de la réduction des endomorphismes. Soient E un espace vectoriel et u un endomorphisme de E. Un sous-espace vectoriel F de E est dit stable par u quand , c'est-à-dire : . Dans ce cas, u induit sur F un endomorphisme L'endomorphisme induit est la double restriction de l'endomorphisme initial avec à la fois un nouvel ensemble de départ et un nouvel ensemble d'arrivée.
Compact operator on Hilbert spaceIn the mathematical discipline of functional analysis, the concept of a compact operator on Hilbert space is an extension of the concept of a matrix acting on a finite-dimensional vector space; in Hilbert space, compact operators are precisely the closure of finite-rank operators (representable by finite-dimensional matrices) in the topology induced by the operator norm. As such, results from matrix theory can sometimes be extended to compact operators using similar arguments.
Topologie induiteEn mathématiques, la topologie induite est une topologie définie sur toute partie Y d'un espace topologique X : c'est la trace sur Y de la topologie sur X. Autrement dit, l'ensemble des ouverts de Y (muni de la topologie induite) est : {O⋂Y | O ouvert de X}. Ou encore : les voisinages dans Y d'un point sont les traces sur Y de ses voisinages dans X. On dit alors que Y est un sous-espace de X. La topologie induite est souvent sous-entendue dans les énoncés de topologie : par exemple, lorsque l'on a un espace topologique X donné, une partie Y de X sera dite compacte si elle est compacte pour la topologie induite par X sur Y.
Fermé (topologie)En mathématiques, dans un espace topologique E, un fermé est un sous-ensemble de E dont le complémentaire est un ouvert. Toute réunion d'une famille finie de fermés est un fermé (y compris l'ensemble vide ∅, qui est — par définition — la réunion de la famille vide). Toute intersection d'une famille (finie ou infinie) de fermés est un fermé (y compris l'espace E tout entier, qui est — par convention dans ce contexte — l'intersection de la famille vide).
Équation différentielle stochastiqueUne équation différentielle stochastique (EDS) est une généralisation de la notion d'équation différentielle prenant en compte un terme de bruit blanc. Les EDS permettent de modéliser des trajectoires aléatoires, tels des cours de bourse ou les mouvements de particules soumises à des phénomènes de diffusion. Elles permettent aussi de traiter théoriquement ou numériquement des problèmes issus de la théorie des équations aux dérivées partielles.
Generalized least squaresIn statistics, generalized least squares (GLS) is a method used to estimate the unknown parameters in a linear regression model when there is a certain degree of correlation between the residuals in the regression model. Least squares and weighted least squares may need to be more statistically efficient and prevent misleading inferences. GLS was first described by Alexander Aitken in 1935. In standard linear regression models one observes data on n statistical units.
Sous-espace vectorielEn algèbre linéaire, un sous-espace vectoriel d'un espace vectoriel E, est une partie non vide F, de E, stable par combinaisons linéaires. Cette stabilité s'exprime par : la somme de deux vecteurs de F appartient à F ; le produit d'un vecteur de F par un scalaire appartient à F. Muni des lois induites, F est alors un espace vectoriel. L'intersection d'une famille non vide de sous-espaces de E est un sous-espace de E. La réunion d'une famille non vide de sous-espaces n'en est généralement pas un ; le sous-espace engendré par cette réunion est la somme de cette famille.
Identités logarithmiquesCet article dresse une liste d'identités utiles lorsqu'on travaille avec les logarithmes. Ces identités sont toutes valables à condition que les réels utilisés (, , et ) soient strictement positifs. En outre, les bases des logarithmes doivent être différentes de 1. Pour toute base , on a : Par définition des logarithmes, on a : Ces trois identités permettent d'utiliser des tables de logarithme et des règles à calcul ; connaissant le logarithme de deux nombres, il est possible de les multiplier et diviser rapidement, ou aussi bien calculer des puissances ou des racines de ceux-ci.