Real coordinate spaceIn mathematics, the real coordinate space of dimension n, denoted Rn or , is the set of the n-tuples of real numbers, that is the set of all sequences of n real numbers. Special cases are called the real line R1 and the real coordinate plane R2. With component-wise addition and scalar multiplication, it is a real vector space, and its elements are called coordinate vectors. The coordinates over any basis of the elements of a real vector space form a real coordinate space of the same dimension as that of the vector space.
Equivalence (measure theory)In mathematics, and specifically in measure theory, equivalence is a notion of two measures being qualitatively similar. Specifically, the two measures agree on which events have measure zero. Let and be two measures on the measurable space and let and be the sets of -null sets and -null sets, respectively.
Théorie du transportEn mathématiques et en économie, la théorie du transport est le nom donné à l'étude du transfert optimal de matière et à l'allocation optimale de ressources. Le problème a été formalisé par le mathématicien français Gaspard Monge en 1781. D'importants développements ont été réalisés dans ce domaine pendant la Seconde Guerre mondiale par le mathématicien et économiste russe Léonid Kantorovitch. Par conséquent, le problème dans sa forme actuelle est parfois baptisé problème (du transport) de Monge-Kantorovitch.
Espace à quatre dimensionsframe|L'équivalent en quatre dimensions du cube est le tesseract. On le voit ici en rotation, projeté dans l'espace usuel (les arêtes représentées comme des tubes bleus sur fond noir).|alt=Animation d'un tesseract (les arêtes représentées comme des tubes bleus sur fond noir). En mathématiques, et plus spécialement en géométrie, l'espace à quatre dimensions (souvent abrégé en 4D ; on parlera par exemple de rotations en 4D) est une extension abstraite du concept de l'espace usuel vu comme espace à trois dimensions : tandis que l'espace tridimensionnel nécessite la donnée de trois nombres, appelés dimensions, pour décrire la taille ou la position des objets, l'espace à quatre dimensions en nécessite quatre.
LongueurEn géométrie, la longueur est la mesure d'une courbe dans un espace sur lequel est définie une notion de distance. La longueur est une mesure linéaire sur une seule dimension, par opposition à la surface qui est une mesure sur deux dimensions, et au volume dont la mesure porte sur trois dimensions. La longueur d'une courbe ne doit pas être confondue avec la distance entre deux points, qui correspond au minimum des longueurs des chemins reliant ces points. La longueur est une grandeur physique et une dimension de base.
Unité de longueurUne unité de longueur est une unité, c'est-à-dire un étalon, permettant d'exprimer la mesure physique. Selon les époques, il existe différentes unités permettant d'expliquer la grandeur physique, intégrées à divers systèmes. L'unité de longueur de référence, internationalement reconnue dans le cadre du Système international est le mètre ; il est décliné en multiples et sous-multiples décimaux. D'autres unités de longueur issus de systèmes différents sont utilisées, soit pour simplifier les expressions dans des domaines d'activités spécifiques, soit pour des raisons culturelles et traditionnelles.
Vecteur unitairevignette|Deux vecteurs unitaires dans un espace vectoriel normé. Dans un espace vectoriel normé (réel ou complexe) E, un vecteur unitaire est un vecteur dont la norme est égale à 1. Si le corps des scalaires est R, deux vecteurs unitaires v et w sont colinéaires si et seulement si v = w ou v = –w. Si le corps des scalaires est C, et si v est un vecteur unitaire de E, alors les vecteurs unitaires colinéaires à v sont αv où α est un complexe de module 1. Les vecteurs unitaires permettent de définir la direction et le sens d'un vecteur non nul de E.
Vecteur euclidienEn mathématiques, et plus précisément en géométrie euclidienne, un vecteur euclidien est un objet géométrique possédant une direction, un sens et une norme. On l'utilise par exemple en physique et en ingénierie pour modéliser une force. On parle aussi parfois de vecteur géométrique dans le plan euclidien (deux dimensions) et de vecteur spatial dans l'espace à trois dimensions. Vecteur#HistoireVecteur En physique et en ingénierie, on travaille souvent dans l'espace euclidien.
Isométrie affineUne isométrie affine est une transformation bijective d'un espace affine euclidien dans un autre qui est à la fois une application affine et une isométrie (c'est-à-dire une bijection conservant les distances). Si cette isométrie conserve aussi l'orientation, on dit que c'est un déplacement. Si elle inverse l'orientation, il s'agit d'un antidéplacement. Les déplacements sont les composés de translations et rotations. Les réflexions sont des antidéplacements. On désigne par le plan (, plus précisément, un plan affine réel euclidien).
Théorie de la stabilitéEn mathématiques, la théorie de la stabilité traite la stabilité des solutions d'équations différentielles et des trajectoires des systèmes dynamiques sous des petites perturbations des conditions initiales. L'équation de la chaleur, par exemple, est une équation aux dérivées partielles stable parce que des petites perturbations des conditions initiales conduisent à des faibles variations de la température à un temps ultérieur en raison du principe du maximum.