Algorithme d'approximationEn informatique théorique, un algorithme d'approximation est une méthode permettant de calculer une solution approchée à un problème algorithmique d'optimisation. Plus précisément, c'est une heuristique garantissant à la qualité de la solution qui fournit un rapport inférieur (si l'on minimise) à une constante, par rapport à la qualité optimale d'une solution, pour toutes les instances possibles du problème.
Matrice symétriquevignette|Matrice 5x5 symétrique. Les coefficients égaux sont représentés par la même couleur. En algèbre linéaire et multilinéaire, une matrice symétrique est une matrice carrée qui est égale à sa propre transposée, c'est-à-dire telle que a = a pour tous i et j compris entre 1 et n, où les a sont les coefficients de la matrice et n est son ordre. Les coefficients d'une matrice symétrique sont symétriques par rapport à la diagonale principale (du coin en haut à gauche jusqu'à celui en bas à droite).
Matrice triangulairevignette|algèbre linéaire En algèbre linéaire, une matrice triangulaire est une matrice carrée dont tous les coefficients sont nuls d’un côté ou de l’autre de la diagonale principale. C’est en particulier le cas si la matrice est diagonale. Une matrice est triangulaire stricte si elle est triangulaire et que tous ses coefficients diagonaux sont nuls. Dans ce qui suit, on considérera un anneau unitaire R non forcément commutatif, des R-modules à gauche et des R-modules à droite.
Théorème des résidusEn analyse complexe, le théorème des résidus est un outil puissant pour évaluer des intégrales curvilignes de fonctions holomorphes sur des courbes fermées qui repose sur les résidus de la fonction à intégrer. Il est utilisé pour calculer des intégrales de fonctions réelles ainsi que la somme de certaines séries. Il généralise le théorème intégral de Cauchy et la formule intégrale de Cauchy. Soient U un sous-ensemble ouvert et simplement connexe du plan complexe C, {z, ...
Matrix ringIn abstract algebra, a matrix ring is a set of matrices with entries in a ring R that form a ring under matrix addition and matrix multiplication . The set of all n × n matrices with entries in R is a matrix ring denoted Mn(R) (alternative notations: Matn(R) and Rn×n). Some sets of infinite matrices form infinite matrix rings. Any subring of a matrix ring is a matrix ring. Over a rng, one can form matrix rngs. When R is a commutative ring, the matrix ring Mn(R) is an associative algebra over R, and may be called a matrix algebra.
Réduction (complexité)En calculabilité et en théorie de la complexité, une réduction est un algorithme transformant une instance d'un problème algorithmique en une ou plusieurs instances d'un autre problème. S'il existe une telle réduction d'un problème A à un problème B, on dit que le problème A se réduit au problème B. Dans ce cas, le problème B est plus difficile que le problème A, puisque l'on peut résoudre le problème A en appliquant la réduction puis un algorithme pour le problème B. On écrit alors A ≤ B.
Espace completEn mathématiques, un espace métrique complet est un espace métrique dans lequel toute suite de Cauchy converge. La propriété de complétude dépend de la distance. Il est donc important de toujours préciser la distance que l'on prend quand on parle d'espace complet. Intuitivement, un espace est complet s'il « n'a pas de trou », s'il « n'a aucun point manquant ». Par exemple, les nombres rationnels ne forment pas un espace complet, puisque n'y figure pas alors qu'il existe une suite de Cauchy de nombres rationnels ayant cette limite.
Complexité de la communicationLa complexité de la communication ou complexité de communication est une notion étudiée en informatique théorique. Le dispositif abstrait classique est le suivant : Alice et Bob ont chacun un message, et ils veulent calculer un nouveau message à partir de leurs messages, en se transmettant un minimum d'information. Par exemple, Alice et Bob reçoivent un mot chacun, et ils doivent décider s'ils ont reçu le même mot ; ils peuvent bien sûr s'envoyer leur mot l'un à l'autre et comparer, mais la question est de minimiser le nombre de messages.
Schéma d'approximation en temps polynomialEn informatique, un schéma d'approximation en temps polynomial (en anglais polynomial-time approximation scheme, abrégé en PTAS) est une famille d'algorithmes d'approximation pour des problèmes d'optimisation combinatoire. On dit aussi plus simplement schéma d'approximation polynomial. Le plus souvent, les problèmes d'optimisation combinatoire considérés sont NP-difficiles. Plusieurs variantes des PTAS existent : des définitions plus restrictives comme les EPTAS et FPTAS, ou d'autres qui reposent sur les algorithmes probabilistes comme les PRAS et FPRAS.
Informatique théoriquevignette|Une représentation artistique d'une machine de Turing. Les machines de Turing sont un modèle de calcul. L'informatique théorique est l'étude des fondements logiques et mathématiques de l'informatique. C'est une branche de la science informatique et la science formelle. Plus généralement, le terme est utilisé pour désigner des domaines ou sous-domaines de recherche centrés sur des vérités universelles (axiomes) en rapport avec l'informatique.