Contrainte holonomeEn mécanique analytique, on dit qu'un système de N particules est soumis à une contrainte holonome s'il existe une équation algébrique caractérisant l'état du système, et dont les variables sont les vecteurs coordonnées des particules, pour . On écrit cette contrainte sous la forme . Si les contraintes sont modélisées par un système d'équations de ce type, on parle encore de contraintes holonomes. Une contrainte qui ne peut pas s'écrire sous cette forme est dite non holonome.
Méthode des éléments finisEn analyse numérique, la méthode des éléments finis (MEF, ou FEM pour finite element method en anglais) est utilisée pour résoudre numériquement des équations aux dérivées partielles. Celles-ci peuvent par exemple représenter analytiquement le comportement dynamique de certains systèmes physiques (mécaniques, thermodynamiques, acoustiques).
Espace de configurationEn physique et plus particulièrement en mécanique classique et en mécanique statistique, l'espace de configuration d'un système physique est l'ensemble des positions possibles que ce système peut atteindre. Un espace de configuration a généralement une structure naturelle de variété et peut être étudié d'un point de vue géométrique ou topologique. L'exemple le plus simple est celui du système composé d'une unique particule se déplaçant dans un plan euclidien.
LinéaritéLe concept de linéarité est utilisé dans le domaine des mathématiques et dans le domaine de la physique, et par extension dans le langage courant. Les premiers exemples de situations où intervient la linéarité sont les situations de proportionnalité constante entre deux variables : le graphe représentant une variable en fonction de l'autre forme alors une ligne droite qui passe par l'origine. Il ne faut cependant pas confondre linéarité et proportionnalité, car la proportionnalité n'est qu'un cas particulier de la linéarité.
Mouvement (mécanique)Un mouvement, dans le domaine de la mécanique (physique), est le déplacement d'un corps par rapport à un point fixe de l'espace nommé référentiel et à un moment déterminé. Le mouvement est plus spécifiquement l'objet de la cinématique et de la dynamique. On caractérise un mouvement par sa trajectoire et l'évolution de sa vitesse par exemple : le mouvement circulaire uniforme : mouvement d'un point ou de tous les points matériels qui décrit un cercle avec une vitesse constante.
Mécanisme flexibleLes mécanismes flexibles ou mécanismes compliant (de l'anglais compliant mechanism) ou liaisons à articulations élastiques, parfois également appelés guidages à articulations élastiques ou encore guidages flexibles, sont des éléments de construction, de divers degrés de complexité, qui remplissent avant tout une fonction cinématique en utilisant le principe physique de l’élasticité de la matière.
Sous-espace vectorielEn algèbre linéaire, un sous-espace vectoriel d'un espace vectoriel E, est une partie non vide F, de E, stable par combinaisons linéaires. Cette stabilité s'exprime par : la somme de deux vecteurs de F appartient à F ; le produit d'un vecteur de F par un scalaire appartient à F. Muni des lois induites, F est alors un espace vectoriel. L'intersection d'une famille non vide de sous-espaces de E est un sous-espace de E. La réunion d'une famille non vide de sous-espaces n'en est généralement pas un ; le sous-espace engendré par cette réunion est la somme de cette famille.
Équations de Lagrangevignette|Joseph-Louis Lagrange Les équations de Lagrange, découvertes en 1788 par le mathématicien Joseph-Louis Lagrange, sont une reformulation de la mécanique classique. Il s'agit d'une reformulation de l'équation de Newton, qui ne fait pas intervenir les forces de réaction. Pour cela, on exprime les contraintes que subit la particule étudiée sous la forme d'équations du type : Il n'y a qu'une équation si le mouvement est contraint à une surface, deux s'il est contraint à une courbe.
Linear least squaresLinear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals. Numerical methods for linear least squares include inverting the matrix of the normal equations and orthogonal decomposition methods. The three main linear least squares formulations are: Ordinary least squares (OLS) is the most common estimator.
Hell in ChristianityIn Christian theology, Hell is the place or state into which, by God's definitive judgment, unrepentant sinners pass in the general judgment, or, as some Christians believe, immediately after death (particular judgment). Its character is inferred from teaching in the biblical texts, some of which, interpreted literally, have given rise to the popular idea of Hell. Theologians today generally see Hell as the logical consequence of rejecting union with God and with God's justice and mercy.