Suite logistiqueEn mathématiques, une suite logistique est une suite réelle simple, mais dont la récurrence n'est pas linéaire. Sa relation de récurrence est Suivant la valeur du paramètre μ (dans [0; 4] pour assurer que les valeurs de x restent dans [0; 1]), elle engendre soit une suite convergente, soit une suite soumise à oscillations, soit une suite chaotique. Souvent citée comme exemple de la complexité de comportement pouvant surgir d'une relation non linéaire simple, cette suite fut popularisée par le biologiste Robert May en 1976.
Oscillateur harmonique quantiqueL'oscillateur harmonique quantique correspond au traitement par les outils de la mécanique quantique de l'oscillateur harmonique classique. De façon générale, un oscillateur est un système dont l'évolution dans le temps est périodique. Il est dit de plus harmonique si les oscillations effectuées sont sinusoïdales, avec une amplitude et une fréquence qui ne dépendent que des caractéristiques intrinsèques du système et des conditions initiales.
Dimension fractaleEn géométrie fractale, la dimension fractale, D, est une grandeur qui a vocation à traduire la façon qu'a un ensemble fractal de remplir l'espace, à toutes les échelles. Dans le cas des fractales, elle est non entière et supérieure à la dimension topologique. Ce terme est un terme générique qui recouvre plusieurs définitions. Chacune peut donner des résultats différents selon l'ensemble considéré, il est donc essentiel de mentionner la définition utilisée lorsqu'on valorise la dimension fractale d'un ensemble.
Calculateur humainAvant l'apparition de machines ou d'ordinateurs électroniques, les recherches des ont nécessité l'emploi de calculateurs humains. Le terme « calculateur » apparaît en anglais (en) au (la première référence écrite date de 1613), et signifie « celui qui calcule ». Il désigne par exemple une personne qui effectue des calculs mathématiques. . Des équipes de personnes ont fréquemment été utilisées pour effectuer des calculs longs et fastidieux, le travail étant divisé de telle sorte que les calculs soient réalisés en parallèle.
Méthode des éléments finisEn analyse numérique, la méthode des éléments finis (MEF, ou FEM pour finite element method en anglais) est utilisée pour résoudre numériquement des équations aux dérivées partielles. Celles-ci peuvent par exemple représenter analytiquement le comportement dynamique de certains systèmes physiques (mécaniques, thermodynamiques, acoustiques).
Fractalevignette|Exemple de figure fractale (détail de l'ensemble de Mandelbrot)|alt=Exemple de figure fractale (détail de l'ensemble de Mandelbrot). vignette|Ensemble de Julia en . Une figure fractale est un objet mathématique qui présente une structure similaire à toutes les échelles. C'est un objet géométrique « infiniment morcelé » dont des détails sont observables à une échelle arbitrairement choisie. En zoomant sur une partie de la figure, il est possible de retrouver toute la figure ; on dit alors qu’elle est « auto similaire ».
État quantiqueL'état d'un système physique décrit tous les aspects de ce système, dans le but de prévoir les résultats des expériences que l'on peut réaliser. Le fait que la mécanique quantique soit non déterministe entraîne une différence fondamentale par rapport à la description faite en mécanique classique : alors qu'en physique classique, l'état du système détermine de manière absolue les résultats de mesure des grandeurs physiques, une telle chose est impossible en physique quantique et la connaissance de l'état permet seulement de prévoir, de façon toutefois parfaitement reproductible, les probabilités respectives des différents résultats qui peuvent être obtenus à la suite de la réduction du paquet d'onde lors de la mesure d'un système quantique.
Théorème de Hurwitz (approximation diophantienne)En théorie des nombres, le théorème de Hurwitz sur les approximations diophantiennes, établi en 1891 par Adolf Hurwitz, énonce que pour tout nombre irrationnel , il existe une infinité de rationnels tels que L'hypothèse d'irrationalité de est indispensable, puisque la mesure d'irrationalité d'un rationnel est égale à 1. L'ensemble des couples vérifiant l'inégalité est infini si et seulement si le sous-ensemble de ceux pour lesquels et sont premiers entre eux l'est.
Équation de SchrödingerL'équation de Schrödinger, conçue par le physicien autrichien Erwin Schrödinger en 1925, est une équation fondamentale en mécanique quantique. Elle décrit l'évolution dans le temps d'une particule massive non relativiste, et remplit ainsi le même rôle que la relation fondamentale de la dynamique en mécanique classique. Au début du , il était devenu clair que la lumière présentait une dualité onde-corpuscule, c'est-à-dire qu'elle pouvait se manifester, selon les circonstances, soit comme une particule, le photon, soit comme une onde électromagnétique.
Représentation de SchrödingerEn mécanique quantique, la représentation de Schrödinger est une des trois formulations et modes de traitement des problèmes dépendant du temps dans le cadre de la mécanique quantique classique. Dans cette représentation, l'état d'un système évolue avec le temps. Le principe de superposition quantique stipule qu'une fonction d'état est en général une combinaison linéaire d'états propres.