Prelog strainIn organic chemistry, transannular strain (also called Prelog strain after chemist Vladimir Prelog) is the unfavorable interactions of ring substituents on non-adjacent carbons. These interactions, called transannular interactions, arise from a lack of space in the interior of the ring, which forces substituents into conflict with one another. In medium-sized cycloalkanes, which have between 8 and 11 carbons constituting the ring, transannular strain can be a major source of the overall strain, especially in some conformations, to which there is also contribution from large-angle strain and Pitzer strain.
Finite strain theoryIn continuum mechanics, the finite strain theory—also called large strain theory, or large deformation theory—deals with deformations in which strains and/or rotations are large enough to invalidate assumptions inherent in infinitesimal strain theory. In this case, the undeformed and deformed configurations of the continuum are significantly different, requiring a clear distinction between them. This is commonly the case with elastomers, plastically-deforming materials and other fluids and biological soft tissue.
IdentifiantUn identifiant est une sorte de nom qui sert à identifier un objet précis dans un ensemble d'objets ; ou plus largement toute suite de caractères qui joue ce rôle-là. En principe, un identifiant devrait être unique pour chaque objet. En pratique (comme pour les noms de personnes ou de lieux) ce n'est pas toujours le cas, sauf s'il s'agit d'un ensemble d'identifiants défini par une norme technique. Un identifiant de métadonnée est un signe, une étiquette ou un jeton indépendant du langage, qui identifie de manière unique un objet au sein d'un schéma d'identification.
Série entièreEn mathématiques et particulièrement en analyse, une série entière est une série de fonctions de la forme où les coefficients a forment une suite réelle ou complexe. Une explication de ce terme est qu'. Les séries entières possèdent des propriétés de convergence remarquables, qui s'expriment pour la plupart à l'aide de son rayon de convergence R, grandeur associée à la série. Sur le disque de convergence (disque ouvert de centre 0 et de rayon R), la fonction somme de la série peut être dérivée indéfiniment terme à terme.
PharmacodépendanceLa pharmacodépendance est un état psychique et parfois physique, résultant de l'interaction entre un organisme vivant et une substance, caractérisé par des réponses comportementales et autres qui comportent toujours une compulsion à prendre la substance de façon continue ou périodique afin d'en ressentir de nouveau ses effets psychiques (perçus comme agréables) et parfois pour éviter l'inconfort de son absence (ou "manque"). (Syndrome de sevrage) La compulsion est une pulsion irrésistible à accomplir un acte : contre sa raison et contre sa volonté.
Module d'élasticitéUn module d'élasticité (ou module élastique ou module de conservation) est une grandeur intrinsèque d'un matériau, définie par le rapport d'une contrainte à la déformation élastique provoquée par cette contrainte. Les déformations étant sans dimension, les modules d'élasticité sont homogènes à une pression et leur unité SI est donc le pascal ; en pratique on utilise plutôt un multiple, le ou le . Le comportement élastique d'un matériau homogène isotrope et linéaire est caractérisé par deux modules (ou constantes) d'élasticité indépendants.
ThermographieLa thermographie ou thermographie infrarouge est une technique permettant d'obtenir une image thermique d'une scène par analyse des infrarouges. L'image obtenue est appelée « thermogramme». La simple visualisation thermique, mais sans mesure de température, s'effectue au moyen d'un imageur thermique. La mesure à distance de la température s'effectue au moyen des appareils suivants : thermomètres infrarouges sans contact, appareil de mesure de température, ou, strictement, d'un « état thermique » ; caméra thermique appareil de mesure de la thermographie.
Série de Taylorthumb|Brook Taylor, dont la série porte le nom. En mathématiques, et plus précisément en analyse, la série de Taylor au point d'une fonction (réelle ou complexe) indéfiniment dérivable en ce point, appelée aussi le développement en série de Taylor de en , est une série entière approchant la fonction autour de , construite à partir de et de ses dérivées successives en . Elles portent le nom de Brook Taylor, qui les a introduites en 1715.
Stratégie d'évaluation (informatique)Un langage de programmation utilise une stratégie d'évaluation pour déterminer « quand » évaluer les arguments à l'appel d'une fonction (ou encore, opération, méthode) et « comment » passer les arguments à la fonction. Par exemple, dans l'appel par valeur, les arguments doivent être évalués avant d'être passés à la fonction. La stratégie d'évaluation d'un langage de programmation est spécifiée par la définition du langage même. En pratique, la plupart des langages de programmation (Java, C...
Madhava seriesIn mathematics, a Madhava series is one of the three Taylor series expansions for the sine, cosine, and arctangent functions discovered in 14th or 15th century Kerala by the mathematician and astronomer Madhava of Sangamagrama (c. 1350 – c. 1425) or his followers in the Kerala school of astronomy and mathematics. Using modern notation, these series are: All three series were later independently discovered in 17th century Europe.