Inégalité de ChernoffEn théorie des probabilités, l'inégalité de Chernoff permet de majorer la queue d'une loi de probabilité, c'est-à-dire qu'elle donne une valeur maximale de la probabilité qu'une variable aléatoire dépasse une valeur fixée. On parle également de borne de Chernoff. Elle est nommée ainsi en l'honneur du mathématicien Herman Chernoff. Elle est comparable à l'inégalité de Markov mais donne une borne exponentielle. Il existe de nombreux énoncés, et de nombreux cas particuliers.
Processus stochastiqueUn processus ou processus aléatoire (voir Calcul stochastique) ou fonction aléatoire (voir Probabilité) représente une évolution, discrète ou à temps continu, d'une variable aléatoire. Celle-ci intervient dans le calcul classique des probabilités, où elle mesure chaque résultat possible (ou réalisation) d'une épreuve. Cette notion se généralise à plusieurs dimensions. Un cas particulier important, le champ aléatoire de Markov, est utilisé en analyse spatiale.
Problème de la platitudeLe problème de la platitude est présenté de façon coutumière comme la difficulté pour les théories d'expliquer que l'espace paraisse plat, c'est-à-dire que sa courbure ne soit pas détectable. En vérité le problème de la platitude témoigne de l'impossibilité pour nos théories actuelles de faire cohabiter le temps de Planck et l'âge de l'univers. Dans les modèles de Friedmann tous les univers apparaissent comme « plats » (de courbure spatiale nulle) à leur naissance. Autrement dit leur courbure initiale, bien que présente, est indétectable.
Inégalité de concentrationDans la théorie des probabilités, les inégalités de concentration fournissent des bornes sur la probabilité qu'une variable aléatoire dévie d'une certaine valeur (généralement l'espérance de cette variable aléatoire). Par exemple, la loi des grands nombres établit qu'une moyenne de variables aléatoires i.i.d. est, sous réserve de vérifier certaines conditions, proche de leur espérance commune. Certains résultats récents vont plus loin, en montrant que ce comportement est également vérifié par d'autres fonctions de variables aléatoires indépendantes.
Problème des lecteurs et des rédacteursLe problème des lecteurs et des rédacteurs est un problème classique en théorie informatique, qui permet de modéliser les accès à des bases de données. Il fut énoncé sous cette forme par Edsger Dijkstra, qui est également à l'origine du problème du dîner des philosophes (problème relatif en particulier à l'ordonnancement des processus). Supposons qu'une base de données ait des lecteurs et des rédacteurs, et qu'il faille programmer les lecteurs et les rédacteurs de cette base de données.
Optimisation (mathématiques)L'optimisation est une branche des mathématiques cherchant à modéliser, à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à minimiser ou maximiser une fonction sur un ensemble. L’optimisation joue un rôle important en recherche opérationnelle (domaine à la frontière entre l'informatique, les mathématiques et l'économie), dans les mathématiques appliquées (fondamentales pour l'industrie et l'ingénierie), en analyse et en analyse numérique, en statistique pour l’estimation du maximum de vraisemblance d’une distribution, pour la recherche de stratégies dans le cadre de la théorie des jeux, ou encore en théorie du contrôle et de la commande.
Analyse numériqueL’analyse numérique est une discipline à l'interface des mathématiques et de l'informatique. Elle s’intéresse tant aux fondements qu’à la mise en pratique des méthodes permettant de résoudre, par des calculs purement numériques, des problèmes d’analyse mathématique. Plus formellement, l’analyse numérique est l’étude des algorithmes permettant de résoudre numériquement par discrétisation les problèmes de mathématiques continues (distinguées des mathématiques discrètes).
Stabilité numériqueEn analyse numérique, une branche des mathématiques, la stabilité numérique est une propriété globale d’un algorithme numérique, une qualité nécessaire pour espérer obtenir des résultats ayant du sens. Une définition rigoureuse de la stabilité dépend du contexte. Elle se réfère à la propagation des erreurs au cours des étapes du calcul, à la capacité de l’algorithme de ne pas trop amplifier d’éventuels écarts, à la précision des résultats obtenus. Le concept de stabilité ne se limite pas aux erreurs d’arrondis et à leurs conséquences.
Calcul numérique d'une intégraleEn analyse numérique, il existe une vaste famille d’algorithmes dont le but principal est d’estimer la valeur numérique de l’intégrale définie sur un domaine particulier pour une fonction donnée (par exemple l’intégrale d’une fonction d’une variable sur un intervalle). Ces techniques procèdent en trois phases distinctes : Décomposition du domaine en morceaux (un intervalle en sous-intervalles contigus) ; Intégration approchée de la fonction sur chaque morceau ; Sommation des résultats numériques ainsi obtenus.
Majorant ou minorantEn mathématiques, soient (E , ≤) un ensemble ordonné et F une partie de E ; un élément x de E est : un majorant de F s'il est supérieur ou égal, par la relation binaire définie au préalable, à tous les éléments de F : ; un minorant de F s'il est inférieur ou égal, par la relation binaire définie au préalable, à tous les éléments de F :. Si F possède un majorant x alors on dit que F est une partie majorée. Si F possède un minorant x alors on dit que F est une partie minorée.