Régression linéaireEn statistiques, en économétrie et en apprentissage automatique, un modèle de régression linéaire est un modèle de régression qui cherche à établir une relation linéaire entre une variable, dite expliquée, et une ou plusieurs variables, dites explicatives. On parle aussi de modèle linéaire ou de modèle de régression linéaire. Parmi les modèles de régression linéaire, le plus simple est l'ajustement affine. Celui-ci consiste à rechercher la droite permettant d'expliquer le comportement d'une variable statistique y comme étant une fonction affine d'une autre variable statistique x.
Voyage dans le tempsLe voyage dans le temps est un des grands thèmes de la science-fiction, au point d’être considéré comme un genre à part entière. L’idée d’aller revivre le passé ou de découvrir à l’avance le futur est un rêve humain causé par le fait que l’être humain avance dans le temps de manière permanente, mais irréversible (et, à l’état de veille, apparemment de façon linéaire). La première mention d’un voyage dans le temps serait le personnage de Merlin l’Enchanteur dans le cycle arthurien des chevaliers de la Table ronde, qui visitait les temps passés.
Erreur quadratique moyenneEn statistiques, l’erreur quadratique moyenne d’un estimateur d’un paramètre de dimension 1 (mean squared error (), en anglais) est une mesure caractérisant la « précision » de cet estimateur. Elle est plus souvent appelée « erreur quadratique » (« moyenne » étant sous-entendu) ; elle est parfois appelée aussi « risque quadratique ».
Prédiction dynamiqueLa prédiction dynamique est une méthode inventée par Newton et Leibniz. Newton l’a appliquée avec succès au mouvement des planètes et de leurs satellites. Depuis elle est devenue la grande méthode de prédiction des mathématiques appliquées. Sa portée est universelle. Tout ce qui est matériel, tout ce qui est en mouvement, peut être étudié avec les outils de la théorie des systèmes dynamiques. Mais il ne faut pas en conclure que pour connaître un système il est nécessaire de connaître sa dynamique.
Circulation routièrethumb|Bouchon routier La circulation routière est le déplacement réglementé des automobiles, d'autres véhicules ou des piétons; au sens large, sur une route, une autoroute ou tout autre type de voirie. vignette|Convention de Genève de 1949 vignette|Convention de Vienne de 1968 La circulation routière s'est développée au vingtième siècle, localement et internationalement. Pour faciliter le développement international de la circulation routière, des conventions ont été établies.
Résidu (statistiques)In statistics and optimization, errors and residuals are two closely related and easily confused measures of the deviation of an observed value of an element of a statistical sample from its "true value" (not necessarily observable). The error of an observation is the deviation of the observed value from the true value of a quantity of interest (for example, a population mean). The residual is the difference between the observed value and the estimated value of the quantity of interest (for example, a sample mean).
Paradoxe temporelvignette|Légende expliquant le paradoxe temporel . Un paradoxe temporel est un paradoxe concernant le temps, l'écoulement du temps ou les conséquences fictives d'un voyage dans le temps. Un paradoxe est une proposition qui contient ou semble contenir une contradiction logique, ou un raisonnement qui, bien que sans faille apparente, aboutit à une absurdité, ou encore, une situation qui contredit l'intuition commune. Le principe de causalité en science veut que tout événement soit la conséquence d'une cause.
Racine de l'erreur quadratique moyenneLa racine de l'erreur quadratique moyenne (REQM) ou racine de l'écart quadratique moyen (en anglais, root-mean-square error ou RMSE, et root-mean-square deviation ou RMSD) est une mesure fréquemment utilisée des différences entre les valeurs (valeurs d'échantillon ou de population) prédites par un modèle ou estimateur et les valeurs observées (ou vraies valeurs). La REQM représente la racine carrée du deuxième moment d'échantillonnage des différences entre les valeurs prédites et les valeurs observées.
Mean squared prediction errorIn statistics the mean squared prediction error (MSPE), also known as mean squared error of the predictions, of a smoothing, curve fitting, or regression procedure is the expected value of the squared prediction errors (PE), the square difference between the fitted values implied by the predictive function and the values of the (unobservable) true value g. It is an inverse measure of the explanatory power of and can be used in the process of cross-validation of an estimated model.
Régression logistiqueEn statistiques, la régression logistique ou modèle logit est un modèle de régression binomiale. Comme pour tous les modèles de régression binomiale, il s'agit d'expliquer au mieux une variable binaire (la présence ou l'absence d'une caractéristique donnée) par des observations réelles nombreuses, grâce à un modèle mathématique. En d'autres termes d'associer une variable aléatoire de Bernoulli (génériquement notée ) à un vecteur de variables aléatoires . La régression logistique constitue un cas particulier de modèle linéaire généralisé.