Bruit additif blanc gaussienLe bruit additif blanc gaussien est un modèle élémentaire de bruit utilisé en théorie de l'information pour imiter de nombreux processus aléatoires qui se produisent dans la nature. Les adjectifs indiquent qu'il est : additif il s'ajoute au bruit intrinsèque du système d'information ; blanc sa puissance est uniforme sur toute la largeur de bande de fréquences du système, par opposition avec un bruit coloré qui privilégie une bande de fréquences par analogie avec une lumière colorée dans le spectre visible ; gaussien il a une distribution normale dans le domaine temporel avec une moyenne nulle (voir bruit gaussien).
Bruit gaussienEn traitement du signal, un bruit gaussien est un bruit dont la densité de probabilité est une distribution gaussienne (loi normale). L'adjectif gaussien fait référence au mathématicien, astronome et physicien allemand Carl Friedrich Gauss. La densité de probabilité d'une variable aléatoire gaussienne est la fonction : où représente le niveau de gris, la valeur de gris moyenne et son écart type. Un cas particulier est le bruit blanc gaussien, dans lequel les valeurs à toute paire de temps sont identiquement distribuées et statistiquement indépendantes (et donc ).
Singularité (mathématiques)En mathématiques, une singularité est en général un point, une valeur ou un cas dans lequel un certain objet mathématique n'est pas bien défini ou bien subit une transition. Ce terme peut donc avoir des significations très différentes en fonction du contexte. Par exemple, dans l'analyse élémentaire, on dit que . En théorie des singularités, le terme prend un sens différent. On dit, par exemple, En algèbre linéaire, une matrice carrée est dite singulière si elle n'est pas inversible.
Logarithmevignette|Tracés des fonctions logarithmes en base 2, e et 10. En mathématiques, le logarithme (de logos : rapport et arithmos : nombre) de base d'un nombre réel strictement positif est la puissance à laquelle il faut élever la base pour obtenir ce nombre. Dans le cas le plus simple, le logarithme compte le nombre d'occurrences du même facteur dans une multiplication répétée : comme 1000 = 10×10×10 = 10, le logarithme en base 10 de 1000 est 3. Le logarithme de en base est noté : . John Napier a développé les logarithmes au début du .
Logarithme naturelLe logarithme naturel ou logarithme népérien, ou encore logarithme hyperbolique jusqu'au , transforme, comme les autres fonctions logarithmes, les produits en sommes. L'utilisation de telles fonctions permet de faciliter les calculs comprenant de nombreuses multiplications, divisions et élévations à des puissances rationnelles. Il est souvent noté ln(). Le logarithme naturel ou népérien est dit de base e car ln(e) = 1. Le logarithme népérien d'un nombre x peut également être défini comme la puissance à laquelle il faut élever e pour obtenir x.
Noise (signal processing)In signal processing, noise is a general term for unwanted (and, in general, unknown) modifications that a signal may suffer during capture, storage, transmission, processing, or conversion. Sometimes the word is also used to mean signals that are random (unpredictable) and carry no useful information; even if they are not interfering with other signals or may have been introduced intentionally, as in comfort noise. Noise reduction, the recovery of the original signal from the noise-corrupted one, is a very common goal in the design of signal processing systems, especially filters.
Bruit blancthumb|Échantillon de bruit blanc. thumb|Spectre plat d'un bruit blanc (sur l'abscisse, la fréquence ; en ordonnée, l'intensité). Un bruit blanc est une réalisation d'un processus aléatoire dans lequel la densité spectrale de puissance est la même pour toutes les fréquences de la bande passante. Le bruit additif blanc gaussien est un bruit blanc qui suit une loi normale de moyenne et variance données. Des générateurs de signaux aléatoires () sont utilisés pour des essais de dispositifs de transmission et, à faible niveau, pour l'amélioration des systèmes numériques par dither.
Théorie des singularitésvignette|droite|Visualisation de la fonction (x, y) → x2 + y2 Dans l'acception que lui a donnée René Thom, la théorie des singularités consiste à étudier des objets et des familles d'objets suivant leur degré de généricité. Dans une famille, l'objet peut subir des changements d'états ce que l'on appelle une bifurcation. Un exemple simple est donné par les courbes de niveau de la fonction : La courbe de niveau pour une valeur positive est un cercle. La valeur 0 est singulière et pour les valeurs négatives, la courbe est vide.
Essential singularityIn complex analysis, an essential singularity of a function is a "severe" singularity near which the function exhibits odd behavior. The category essential singularity is a "left-over" or default group of isolated singularities that are especially unmanageable: by definition they fit into neither of the other two categories of singularity that may be dealt with in some manner – removable singularities and poles. In practice some include non-isolated singularities too; those do not have a residue.
Logarithme itérévignette|Graphique montrant le logarithme itéré En informatique, le logarithme itéré d'un nombre n, noté (lu "log star" ou "log étoile"), est le nombre de fois que le logarithme doit lui être appliqué avant que le résultat soit inférieur ou égal à 1. Cette fonction est utilisée pour décrire la complexité de certains algorithmes, notamment en algorithmique distribuée. Le logarithme itéré de base b peut être défini par : Sur les nombres réels positifs, le continu (l'inverse de la tétration) est essentiellement équivalente : Le tableau suivant donne les valeurs du logarithme itéré (en base 2) : Cette fonction croît extrêmement lentement.