Nombre p-adiquevignette|Les entiers 3-adiques, avec des représentations obtenues par dualité de Pontriaguine. En mathématiques, et plus particulièrement en théorie des nombres, pour un nombre premier fixé, les nombres p-adiques forment une extension particulière du corps des nombres rationnels, découverte par Kurt Hensel en 1897. Le corps commutatif des nombres -adiques peut être construit par complétion de , d'une façon analogue à la construction des nombres réels par les suites de Cauchy, mais pour une valeur absolue moins familière, nommée valeur absolue -adique.
Analyse p-adiqueL’analyse p-adique est une branche des mathématiques qui traite des fonctions de nombres p-adiques. Ses principales applications concernent la théorie des nombres : elle est utilisée dans l'étude des équations diophantiennes (c'était la motivation de Hensel pour définir les nombres p-adiques) ; l'étude des fonctions spéciales p-adiques (fonctions exponentielle et logarithme, fonctions zêta, gamma) permet de mieux comprendre l'arithmétique cachée dans les valeurs spéciales des fonctions réelles ; l'analyse fonctionnelle p-adique joue un rôle important dans l'étude des représentations de certains .
ValuationEn mathématiques, plus particulièrement en géométrie algébrique et en théorie des nombres, une valuation, ou valuation de Krull, est une mesure de la multiplicité. La notion est une généralisation de la notion de degré ou d'ordre d'annulation d'un polynôme formel en algèbre, du degré de divisibilité par un nombre premier en théorie des nombres, de l'ordre d'un pôle en analyse complexe ou du nombre de points de contact entre deux variétés algébriques en géométrie algébrique.
Principe local-globalPour le point de vue de la géométrie différentielle sur cette notion, voir l'article Passage du local au global. En mathématiques, et plus particulièrement en théorie algébrique des nombres et en géométrie algébrique, le principe local-global consiste à essayer de reconstituer une information sur un objet global à partir d'informations sur des objets locaux associés (ses localisations en tous les idéaux premiers), censées être plus faciles à obtenir. Ce théorème porte sur les formes quadratiques sur le corps global des nombres rationnels.
Corps localEn mathématiques, un corps local est un corps commutatif topologique localement compact pour une topologie non discrète. Sa topologie est alors définie par une valeur absolue. Les corps locaux interviennent de façon fondamentale en théorie algébrique des nombres. Si k est un corps fini, le corps k((X)) des séries formelles de Laurent à coefficients dans k est un corps local. Tout complété d'un corps de nombres (ou plus généralement un corps global) pour une valuation non triviale est un corps local.
Lemme de HenselEn mathématiques, le lemme de Hensel, est un résultat permettant de déduire l'existence d'une racine d'un polynôme à partir de l'existence d'une solution approchée. Il doit son nom au mathématicien du début du Kurt Hensel. Sa démonstration est analogue à celle de la méthode de Newton. La notion d'anneau hensélien regroupe les anneaux dans lesquels le lemme de Hensel s'applique. Les exemples les plus usuels sont Z (l'anneau des entiers p-adiques, pour p un nombre premier) et k[[t]] (l'anneau des séries formelles sur un corps k) ou plus généralement, les anneaux de valuation discrète complets.
Cohomologie cristallineLa cohomologie cristalline est une cohomologie de Weil pour les schémas, introduite par Alexander Grothendieck en 1966 et développée par Pierre Berthelot. Elle étend le domaine d'application de la cohomologie étale en considérant les modules sur les anneaux de vecteurs de Witt sur le corps de base. Conjectures de Weil Dans l'étude des variétés différentiables compactes, la formule de Lefschetz permet de calculer le nombre de points fixes d'un morphisme de la variété dans elle-même.
I-adic topologyIn commutative algebra, the mathematical study of commutative rings, adic topologies are a family of topologies on the underlying set of a module, generalizing the p-adic topologies on the integers. Let R be a commutative ring and M an R-module. Then each ideal a of R determines a topology on M called the a-adic topology, characterized by the pseudometric The family is a basis for this topology. With respect to the topology, the module operations of addition and scalar multiplication are continuous, so that M becomes a topological module.
Function field of an algebraic varietyIn algebraic geometry, the function field of an algebraic variety V consists of objects which are interpreted as rational functions on V. In classical algebraic geometry they are ratios of polynomials; in complex algebraic geometry these are meromorphic functions and their higher-dimensional analogues; in modern algebraic geometry they are elements of some quotient ring's field of fractions. In complex algebraic geometry the objects of study are complex analytic varieties, on which we have a local notion of complex analysis, through which we may define meromorphic functions.
Cohomologie étaleLa cohomologie étale est la théorie cohomologique des faisceaux associée à la topologie étale. Elle mime le comportement habituel de la cohomologie classique sur des objets mathématiques où celle-ci n'est pas envisageable, en particulier les schémas et les espaces analytiques. La cohomologie étale a été introduite pour les schémas par Alexander Grothendieck et Michael Artin dans SGA 4 et 41⁄2, avec l'objectif de réaliser une cohomologie de Weil et ainsi résoudre les conjectures de Weil, objectif partiellement rempli, plus tard complété par Pierre Deligne avec l'introduction de la cohomologie l-adique.