FiberFiber or fibre (British English; from fibra) is a natural or artificial substance that is significantly longer than it is wide. Fibers are often used in the manufacture of other materials. The strongest engineering materials often incorporate fibers, for example carbon fiber and ultra-high-molecular-weight polyethylene. Synthetic fibers can often be produced very cheaply and in large amounts compared to natural fibers, but for clothing natural fibers can give some benefits, such as comfort, over their synthetic counterparts.
Élément entierEn mathématiques, et plus particulièrement en algèbre commutative, les éléments entiers sur un anneau commutatif sont à la fois une généralisation des entiers algébriques (les éléments entiers sur l'anneau des entiers relatifs) et des éléments algébriques dans une extension de corps. C'est une notion très utile en théorie algébrique des nombres et en géométrie algébrique. Son émergence a commencé par l'étude des entiers quadratiques, en particulier les entiers de Gauss. On fixe un anneau commutatif A.
Fibre synthétiquethumb|Bobines de fils de polyester. Dans le textile, la fibre synthétique est une fibre (ou un fil) produite à partir de matière(s) synthétique(s). Une matière synthétique est une matière obtenue par synthèse de composés chimiques. Ces derniers viennent presque exclusivement d'hydrocarbures ou plus récemment d'amidon. thumb|Fabrication de Perlon, une fibre polyamide, en Allemagne de l'Est en 1959. L'idée de fabriquer des fibres synthétiques date de Robert Hooke en 1664.
Théorème de modularitéLe théorème de modularité (auparavant appelé conjecture de Taniyama-Weil ou conjecture de Shimura-Taniyama-Weil ou conjecture de Shimura-Taniyama) énonce que, pour toute courbe elliptique sur Q, il existe une forme modulaire de poids 2 pour un Γ(N), ayant même fonction L que la courbe elliptique. Une grande partie de ce résultat, suffisante pour en déduire le dernier théorème de Fermat, a été démontrée par Andrew Wiles. S'inspirant de ses techniques, Christophe Breuil, Brian Conrad, Fred Diamond et Richard Taylor ont traité les cas restants en 1999.
Entier sans facteur carrévignette|Les nombres qui n'ont pas été rayé sont tous les entiers sans facteur carré jusqu'à 120 En mathématiques et plus précisément en arithmétique, un entier sans facteur carré (souvent appelé, par tradition ou commodité quadratfrei ou squarefree) est un entier relatif qui n'est divisible par aucun carré parfait, excepté 1. Par exemple, 10 est sans facteur carré mais 18 ne l'est pas, puisqu'il est divisible par 9 = 3. Les dix plus petits nombres de la des entiers positifs sans facteur carré sont 1, 2, 3, 5, 6, 7, 10, 11, 13, 14.
Entier quadratiqueEn mathématiques, un entier quadratique est un nombre complexe, racine d'un polynôme unitaire du second degré à coefficients entiers. La notion de nombre algébrique de degré inférieur ou égal à 2 est plus générale : elle correspond à un nombre complexe, racine d'un polynôme du second degré à coefficients seulement rationnels. Ces nombres particuliers disposent de propriétés algébriques.
Dernier théorème de FermatEn mathématiques, et plus précisément en théorie des nombres, le dernier théorème de Fermat, ou grand théorème de Fermat, ou depuis sa démonstration théorème de Fermat-Wiles, s'énonce comme suit : Énoncé par Pierre de Fermat d'une manière similaire dans une note marginale de son exemplaire d'un livre de Diophante, il a cependant attendu plus de trois siècles une preuve publiée et validée, établie par le mathématicien britannique Andrew Wiles en 1994.
Cellule photovoltaïqueUne cellule photovoltaïque, ou cellule solaire, est un composant électronique qui, exposé à la lumière, produit de l’électricité grâce à l’effet photovoltaïque. La puissance électrique obtenue est proportionnelle à la puissance lumineuse incidente et elle dépend du rendement de la cellule. Celle-ci délivre une tension continue et un courant la traverse dès qu'elle est connectée à une charge électrique (en général un onduleur, parfois une simple batterie électrique).
Théorie des modèlesLa théorie des modèles est une branche de la logique mathématique qui traite de la construction et de la classification des structures. Elle définit en particulier les modèles des théories axiomatiques, l'objectif étant d'interpréter les structures syntaxiques (termes, formules, démonstrations...) dans des structures mathématiques (ensemble des entiers naturels, groupes, univers...) de façon à leur associer des concepts de nature sémantique (comme le sens ou la vérité).
Partition d'un entierEn mathématiques, une partition d'un entier (parfois aussi appelée partage d'un entier) est une décomposition de cet entier en une somme d'entiers strictement positifs (appelés parties ou sommants), à l'ordre près des termes (à la différence du problème de composition tenant compte de l'ordre des termes). Une telle partition est en général représentée par la suite des termes de la somme, rangés par ordre décroissant. Elle est visualisée à l'aide de son diagramme de Ferrers, qui met en évidence la notion de partition duale ou conjuguée.