Loi de PoissonEn théorie des probabilités et en statistiques, la loi de Poisson est une loi de probabilité discrète qui décrit le comportement du nombre d'événements se produisant dans un intervalle de temps fixé, si ces événements se produisent avec une fréquence moyenne ou espérance connue, et indépendamment du temps écoulé depuis l'événement précédent. gauche|vignette|Chewing gums sur un trottoir. Le nombre de chewing gums sur un pavé est approximativement distribué selon une loi de Poisson.
Loi de WeibullEn théorie des probabilités, la loi de Weibull, nommée d'après Waloddi Weibull en 1951, est une loi de probabilité continue. La loi de Weibull est un cas spécial de loi d'extremum généralisée au même titre que la loi de Gumbel ou la loi de Fréchet. Avec deux paramètres (pour x > 0), la densité de probabilité est : où k > 0 est le paramètre de forme et λ > 0 le paramètre d'échelle de la distribution.
Loi log-normaleEn théorie des probabilités et statistique, une variable aléatoire X est dite suivre une loi log-normale de paramètres et si la variable suit une loi normale d'espérance et de variance . Cette loi est parfois appelée loi de Galton. Elle est habituellement notée dans le cas d'une seule variable ou dans un contexte multidimensionnel. Une variable peut être modélisée par une loi log-normale si elle est le résultat de la multiplication d'un grand nombre de petits facteurs indépendants.
Distribution de logicielsLa distribution de logiciels est l'action de mettre un logiciel à disposition des usagers. Les logiciels peuvent être distribués dans le commerce de détail, téléchargés en libre-service, incorporés dans un appareil informatique, ou mis en ligne sur un ordinateur du fournisseur. La distribution peut être gratuite, peut faire l'objet de commerce et peut être complétée par des contrats de service concernant par exemple de la maintenance ou de l'assistance technique.
Compatibilité électromagnétiqueLa compatibilité électromagnétique ou CEM (en anglais, electromagnetic compatibility ou EMC) est l'aptitude d'un appareil ou d'un système électrique ou électronique, à fonctionner correctement dans l'environnement électromagnétique pour lequel l'appareil est conçu, sans produire lui-même des perturbations électromagnétiques que ne peuvent supporter les autres appareils de son environnement.
Impulsion électromagnétiquevignette|redresse=1.2|Simulateur d'EMP HAGII-C testé sur un avion Boeing E-4 (1979). Une impulsion électromagnétique (IEM), également connue sous le nom EMP (de l'anglais electromagnetic pulse) est une émission d'ondes électromagnétiques brève et de très forte amplitude qui peut détruire de nombreux appareils électriques et électroniques (reliés au courant et non protégés) et brouiller les télécommunications.
Simulation de phénomènesLa simulation de phénomènes est un outil utilisé dans le domaine de la recherche et du développement. Elle permet d'étudier les réactions d'un système à différentes contraintes pour en déduire les résultats recherchés en se passant d'expérimentation. Les systèmes technologiques (infrastructures, véhicules, réseaux de communication, de transport ou d'énergie) sont soumis à différentes contraintes et actions. Le moyen le plus simple d'étudier leurs réactions serait d'expérimenter, c'est-à-dire d'exercer l'action souhaitée sur l'élément en cause pour observer ou mesurer le résultat.
Méthodologie historiqueDans l'épistémologie et en histoire, la méthodologie historique désigne l’ensemble des réflexions qui portent sur les procédés, les moyens, les règles suivies et les contextes des travaux des historiens. Elle tend à expliquer comment les historiens produisent des interprétations historiques, définissent des méthodes considérées déontologiques ou tout au moins valides. La méthodologie historique cherche notamment à établir les causes des évènements historiques, ainsi que leurs conséquences.
Méthode d'EulerEn mathématiques, la méthode d'Euler, nommée ainsi en l'honneur du mathématicien Leonhard Euler (1707 — 1783), est une procédure numérique pour résoudre par approximation des équations différentielles du premier ordre avec une condition initiale. C'est la plus simple des méthodes de résolution numérique des équations différentielles. thumb|Illustration de la méthode d'Euler explicite : l'avancée se fait par approximation sur la tangente au point initial.
Méthode de Newtonvignette|Une itération de la méthode de Newton. En analyse numérique, la méthode de Newton ou méthode de Newton-Raphson est, dans son application la plus simple, un algorithme efficace pour trouver numériquement une approximation précise d'un zéro (ou racine) d'une fonction réelle d'une variable réelle. Cette méthode doit son nom aux mathématiciens anglais Isaac Newton (1643-1727) et Joseph Raphson (peut-être 1648-1715), qui furent les premiers à la décrire pour la recherche des solutions d'une équation polynomiale.