Matrice par blocsvignette|Un matrice présente une structure par blocs si l'on peut isoler les termes non nuls dans des sous-matrices (ici la structure « diagonale par blocs » d'une réduite de Jordan). On appelle matrice par blocs une matrice divisée en blocs à partir d'un groupement quelconque de termes contigus de sa diagonale. Chaque bloc étant indexé comme on indicerait les éléments d'une matrice, la somme et le produit de deux matrices partitionnées suivant les mêmes tailles de bloc, s'obtiennent avec les mêmes règles formelles que celles des composantes (mais en veillant à l'ordre des facteurs dans les produits matriciels!).
Formulation implicite ou explicite d'un problème de dynamiqueEn simulation numérique, un problème dépendant du temps peut être formulé de manière implicite ou explicite. Un problème dépendant du temps décrit une situation qui évolue ; le système est modélisé à différents instants t discrets appelés « pas de temps ». La méthode explicite consiste à déterminer la solution à t + Δt en fonction de la valeur de la fonction en t. Si la fonction à évaluer s'appelle y(t), alors le problème se formule de la manière suivante : y(t + Δt) = F(y(t)). La méthode d'Euler est une méthode explicite.
Méthode d'EulerEn mathématiques, la méthode d'Euler, nommée ainsi en l'honneur du mathématicien Leonhard Euler (1707 — 1783), est une procédure numérique pour résoudre par approximation des équations différentielles du premier ordre avec une condition initiale. C'est la plus simple des méthodes de résolution numérique des équations différentielles. thumb|Illustration de la méthode d'Euler explicite : l'avancée se fait par approximation sur la tangente au point initial.
Équation différentielle ordinaireEn mathématiques, une équation différentielle ordinaire (parfois simplement appelée équation différentielle et abrégée en EDO) est une équation différentielle dont la ou les fonctions inconnues ne dépendent que d'une seule variable; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. Le terme ordinaire est utilisé par opposition au terme équation différentielle partielle (plus communément équation aux dérivées partielles, ou EDP) où la ou les fonctions inconnues peuvent dépendre de plusieurs variables.
Équation différentielle à retardEn mathématiques, les équations différentielles à retard (EDR) sont un type d'équation différentielle dans laquelle la dérivée de la fonction inconnue à un certain instant est donnée en fonction des valeurs de la fonction aux instants précédents. Les EDR sont également appelés des systèmes à retard, systèmes avec effet secondaire ou temps mort, systèmes héréditaires, équations à argument déviant, ou équations aux différences différentielles .
Covariant formulation of classical electromagnetismThe covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism (in particular, Maxwell's equations and the Lorentz force) in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another.
Idempotent matrixIn linear algebra, an idempotent matrix is a matrix which, when multiplied by itself, yields itself. That is, the matrix is idempotent if and only if . For this product to be defined, must necessarily be a square matrix. Viewed this way, idempotent matrices are idempotent elements of matrix rings. Examples of idempotent matrices are: Examples of idempotent matrices are: If a matrix is idempotent, then implying so or implying so or Thus, a necessary condition for a matrix to be idempotent is that either it is diagonal or its trace equals 1.
Produit scalaireEn mathématiques, et plus précisément en algèbre et en géométrie vectorielle, le produit scalaire est une opération algébrique s'ajoutant aux lois s'appliquant aux vecteurs. C'est une forme bilinéaire, symétrique, définie positive. À deux vecteurs, elle associe un scalaire, c'est-à-dire un nombre tel que ceux qui définissent cet espace vectoriel — réel pour un espace vectoriel réel. Si et sont deux vecteurs d'un espace vectoriel E sur le corps R des nombres réels, alors le produit scalaire de u par v est un scalaire (c'est-à-dire un élément de R), noté ∙ , , , ou .
Produit vectorielEn mathématiques, et plus précisément en géométrie, le produit vectoriel est une opération vectorielle effectuée dans les espaces euclidiens orientés de dimension 3. Le formalisme utilisé actuellement est apparu en 1881 dans un manuel d'analyse vectorielle écrit par Josiah Willard Gibbs pour ses étudiants en physique. Les travaux de Hermann Günther Grassmann et William Rowan Hamilton sont à l'origine du produit vectoriel défini par Gibbs.
Matrice de permutationUne matrice de permutation est une matrice carrée qui vérifie les propriétés suivantes : les coefficients sont 0 ou 1 ; il y a un et un seul 1 par ligne ; il y a un et un seul 1 par colonne. Ainsi : est une matrice de permutation. Les matrices de permutations carrées de taille n sont en bijection avec les permutations de l'ensemble {1,2,...n}. Si σ est une telle permutation, la matrice correspondante est de terme général Cette bijection est un morphisme de groupes : En utilisant cette identité avec deux permutations inverses l'une de l'autre, on obtient le fait qu'une matrice de permutation est inversible, et que son inverse est la matrice de la permutation inverse.