Application linéaireEn mathématiques, une application linéaire (aussi appelée opérateur linéaire ou transformation linéaire) est une application entre deux espaces vectoriels qui respecte l'addition des vecteurs et la multiplication scalaire, et préserve ainsi plus généralement les combinaisons linéaires. L’expression peut s’utiliser aussi pour un morphisme entre deux modules sur un anneau, avec une présentation semblable en dehors des notions de base et de dimension. Cette notion étend celle de fonction linéaire en analyse réelle à des espaces vectoriels plus généraux.
Action de groupe (mathématiques)En mathématiques, une action d'un groupe sur un ensemble est une loi de composition externe du groupe sur l'ensemble, vérifiant des conditions supplémentaires. Plus précisément, c'est la donnée, pour chaque élément du groupe, d'une permutation de l'ensemble, de telle manière que toutes ces bijections se composent de façon compatible avec la loi du groupe. Étant donné un ensemble E et un groupe G, dont la loi est notée multiplicativement et dont l'élément neutre est noté e, une action (ou opération) de G sur E est une application : vérifiant chacune des 2 propriétés suivantes : On dit également que G opère (ou agit) sur l'ensemble E.
DiazoniumUn diazonium est un cation formé d'un groupe de deux atomes d'azote en position terminale sur une molécule. La structure R-N≡N+ est également considérée comme un groupe fonctionnel L'ion diazonium est un cation et la dénomination d'un composé contenant un tel ion se fait suivant la nomenclature habituelle des sels : le nom de l'anion suivi de la particule de et ensuite le nom du cation. Ex. : fluorure de benzènediazonium. Le nom du cation se construit en spécifiant le nom complet de la structure qui porte le groupe diazonium en préfixe suivi du suffixe -diazonium.
Groupe unitaireEn mathématiques, le groupe unitaire de degré n sur un corps K relativement à un anti automorphisme involutif (cf. Algèbre involutive) σ de K (par exemple K le corps des nombres complexes et σ la conjugaison) est le groupe des matrices carrées A d'ordre n à coefficients dans K, qui sont unitaires pour σ, c'est-à-dire telles Aσ(tA) = In. Plus généralement, on peut définir le groupe unitaire d'une forme hermitienne ou antihermitienne non dégénérée φ sur un espace vectoriel sur un corps comme étant le groupe des éléments f de GL(E) tels que φ(f(x), f(y)) = φ(x, y) quels que soient les vecteurs x et y de E.
Phénol (groupe)thumb|120px|Le phénol, le plus simple des composés phénoliques. En chimie organique, les phénols sont des composés constitués d'un cycle aromatique hydrocarboné (arène) et d'un ou plusieurs groupes hydroxyle –OH qui y sont attachés. Les polyphénols, composés constitués par exemple de plus d'un cycle phénolique, font partie des phénols. Certains phénols ont des fonctions biologiques importantes (défense biochimique contre les micro-organismes et champignons chez les végétaux notamment) chez certaines espèces, mais ils peuvent être toxiques pour l'être humain et pour d'autres espèces animales.
Automorphism groupIn mathematics, the automorphism group of an object X is the group consisting of automorphisms of X under composition of morphisms. For example, if X is a finite-dimensional vector space, then the automorphism group of X is the group of invertible linear transformations from X to itself (the general linear group of X). If instead X is a group, then its automorphism group is the group consisting of all group automorphisms of X. Especially in geometric contexts, an automorphism group is also called a symmetry group.
Forme quadratiquethumb|L'annulation d'une forme quadratique donne le cône de lumière de la relativité restreinte, son signe fait la différence entre les événements accessibles ou inaccessibles dans l'espace-temps. En mathématiques, une forme quadratique est un polynôme homogène de degré 2 avec un nombre quelconque de variables. Les formes quadratiques d'une, deux et trois variables sont données respectivement par les formules suivantes (a,b,c,d,e,f désignant des coefficients) : L'archétype de forme quadratique est la forme x + y + z sur R, qui définit la structure euclidienne et dont la racine carrée permet de calculer la norme d'un vecteur.
OrganolithienUn organolithien, ou simplement lithien, est un composé organométallique présentant une liaison carbone–lithium. Ce sont des réactifs importants en synthèse organique couramment utilisés pour transférer leur chaîne carbonée ou leur atome de lithium à travers une addition nucléophile ou une déprotonation. On utilise les organolithiens dans l'industrie pour l'amorçage de réactions de polymérisation anionique permettant de produire de nombreux élastomères, ainsi qu'en synthèse asymétrique dans l'industrie pharmaceutique.
Indépendance linéaireEn algèbre linéaire, étant donné une famille de vecteurs d'un même espace vectoriel, les vecteurs de la famille sont linéairement indépendants, ou forment une famille libre, si la seule combinaison linéaire de ces vecteurs qui soit égale au vecteur nul est celle dont tous les coefficients sont nuls. Cela revient à dire qu'aucun des vecteurs de la famille n'est combinaison linéaire des autres. Dans le cas où des vecteurs ne sont pas linéairement indépendants, on dit qu'ils sont linéairement dépendants, ou qu'ils forment une famille liée.
Forme sonateEn musique classique, la forme sonate est une forme musicale qui est composée de trois parties : l'exposition, le développement et la réexposition (ou récapitulation). La forme sonate est le plus souvent fondée sur deux thèmes musicaux, utilisés lors de l'exposition et la récapitulation, et souvent combinés ou se répondant lors du développement. Attention à ne pas confondre la forme sonate et la sonate. Généralement, le premier mouvement d'une sonate - mais aussi d'une symphonie, d'un concerto - est de forme sonate.