Homologie de HochschildL’homologie de Hochschild et la cohomologie de Hochschild sont des théories homologiques et cohomologiques définies à l'origine pour les algèbres associatives, mais qui ont été généralisées à des catégories plus générales. Elles ont été introduites par Gerhard Hochschild en 1945. La cohomologie cyclique développée par Alain Connes et Jean-Louis Loday en est une généralisation. La cohomologie de Hochschild classifie les de la structure multiplicative de l'algèbre considérée, et d'une manière générale l'homologie comme la cohomologie de Hochschild possèdent une riche structure algébrique.
Koszul complexIn mathematics, the Koszul complex was first introduced to define a cohomology theory for Lie algebras, by Jean-Louis Koszul (see Lie algebra cohomology). It turned out to be a useful general construction in homological algebra. As a tool, its homology can be used to tell when a set of elements of a (local) ring is an M-regular sequence, and hence it can be used to prove basic facts about the depth of a module or ideal which is an algebraic notion of dimension that is related to but different from the geometric notion of Krull dimension.
Homologie des groupesEn algèbre homologique, l'homologie d'un groupe est un invariant attaché à ce groupe. Pour un groupe G, on note Z[G] l'algèbre du groupe G sur l'anneau des entiers relatifs Z. Soient alors M un Z[G]-module (ce qui revient à se donner un groupe abélien M et un morphisme de G dans le groupe des automorphismes de M), et une résolution projective de M. Les groupes d'homologie de G à coefficients dans M sont définis par : De façon duale les groupes de cohomologie de G à coefficients dans M sont définis par : où est une résolution injective de M.
Cap-produitEn mathématiques, et plus particulièrement en topologie algébrique, le cap-produit est une opération binaire qui permet d'assembler des chaînes et des cochaînes. Elle a été introduite par Eduard Čech en 1936 et indépendamment par Hassler Whitney en 1938. Soit X un espace topologique et A un anneau. Le cap-produit est une application bilinéaire définie sur les chaines et les cochaines singulières en posant avec et et où est la restriction de l'application simpliciale à la face engendrée par les vecteurs .
Dérivée covarianteEn géométrie différentielle, la dérivée covariante est un outil destiné à définir la dérivée d'un champ de vecteurs sur une variété. Dans le cas où la dérivée covariante existe, il n'existe pas de différence entre la dérivée covariante et la connexion, à part la manière dont elles sont introduites. (Cela est faux quand la dérivée covariante n'existe pas en revanche ).
Cup-produitEn topologie algébrique (une branche des mathématiques), le cup-produit est une opération binaire définie sur les groupes de cohomologie qui permet d'assembler des cocycles. Cette opération est graduée, associative et distributive, ce qui permet de définir l'. Introduite à l'origine en cohomologie singulière, des constructions analogues existent pour différentes théories cohomologiques. Le cup-produit se généralise sous la forme du .
CohomologyIn mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory.
Dualité (mathématiques)thumb|Dual d'un cube : un octaèdre. En mathématiques, le mot dualité a de nombreuses utilisations. Une dualité est définie à l'intérieur d'une famille d'objets mathématiques, c'est-à-dire qu'à tout objet de on associe un autre objet de . On dit que est le dual de et que est le primal de . Si (par = on peut sous-entendre des relations d'isomorphies complexes), on dit que est autodual. Dans de nombreux cas de dualité, le dual du dual est le primal. Ainsi, par exemple, le concept de complémentaire d'un ensemble pourrait être vu comme le premier des concepts de dualité.
Tenseur de torsionEn géométrie différentielle, la torsion constitue, avec la courbure, une mesure de la façon dont une base mobile évolue le long des courbes, et le tenseur de torsion en donne l'expression générale dans le cadre des variétés, c'est-à-dire des « espaces courbes » de toutes dimensions. La torsion se manifeste en géométrie différentielle classique comme une valeur numérique associée à chaque point d'une courbe de l'espace euclidien.
Champ tensorielEn mathématiques, en physique et en ingénierie, un champ tensoriel est un concept très général de quantité géométrique variable. Il est utilisé en géométrie différentielle et dans la théorie des variétés, en géométrie algébrique, en relativité générale, dans l'analyse des contraintes et de la déformation dans les matériaux, et en de nombreuses applications dans les sciences physiques et dans le génie. C'est une généralisation de l'idée de champ vectoriel, lui-même conçu comme un « vecteur qui varie de point en point », à celle, plus riche, de « tenseur qui varie de point en point ».