Variable aléatoire à densitéEn théorie des probabilités, une variable aléatoire à densité est une variable aléatoire réelle, scalaire ou vectorielle, pour laquelle la probabilité d'appartenance à un domaine se calcule à l'aide d'une intégrale sur ce domaine. La fonction à intégrer est alors appelée « fonction de densité » ou « densité de probabilité », égale (dans le cas réel) à la dérivée de la fonction de répartition. Les densités de probabilité sont les fonctions essentiellement positives et intégrables d'intégrale 1.
Équation de LangevinLéquation de Langevin' (1908) est une équation stochastique pour le mouvement brownien. Dans l'approche théorique de Langevin, une grosse particule brownienne de masse m, supposée animée à l'instant t d'une vitesse , est soumise à deux forces bien distinctes : une force de frottement fluide du type , où k est une constante positive. Dans le cas d'une particule sphérique de rayon a, cette constante s'écrit explicitement : (loi de Stokes). une force complémentaire, notée , qui synthétise la résultante des chocs aléatoires des molécules de fluide environnantes.
Équation des ondesL' ou est une équation aux dérivées partielles en physique qui régit la propagation d'une onde. C'est une équation vérifiée par de nombreux phénomènes ondulatoires de la vie courante comme le son ou la lumière. avec : l'opérateur laplacien ; l'onde vectorielle; une constante, vitesse de propagation de dans le milieu considéré ; L'utilisation du laplacien permet de s'affranchir du choix d'un système de coordonnées. avec : l'opérateur de dérivée partielle seconde en appliqué sur ; , les trois variables cartésiennes de l'espace, et celle du temps.
Fonction de masse (probabilités)En théorie des probabilités, la fonction de masse est la fonction qui donne la probabilité de chaque issue ( résultat élémentaire) d'une expérience aléatoire. C'est souvent ainsi que l'on définit une loi de probabilité discrète. Elle se distingue de la fonction de densité, de la densité de probabilité, en ceci que les densités de probabilité ne sont définies que pour des variables aléatoires absolument continues, et que ce sont leurs intégrales sur des domaines qui ont valeurs de probabilités (et non leurs valeurs en des points).
Free particleIn physics, a free particle is a particle that, in some sense, is not bound by an external force, or equivalently not in a region where its potential energy varies. In classical physics, this means the particle is present in a "field-free" space. In quantum mechanics, it means the particle is in a region of uniform potential, usually set to zero in the region of interest since the potential can be arbitrarily set to zero at any point in space. The classical free particle is characterized by a fixed velocity v.
Équation différentielle ordinaireEn mathématiques, une équation différentielle ordinaire (parfois simplement appelée équation différentielle et abrégée en EDO) est une équation différentielle dont la ou les fonctions inconnues ne dépendent que d'une seule variable; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. Le terme ordinaire est utilisé par opposition au terme équation différentielle partielle (plus communément équation aux dérivées partielles, ou EDP) où la ou les fonctions inconnues peuvent dépendre de plusieurs variables.
Équations de Boussinesqthumb|right|250px|Ondes de gravité à l'entrée d'un port (milieu à profondeur variable). Les équations de Boussinesq en mécanique des fluides désignent un système d'équations d'ondes obtenu par approximation des équations d'Euler pour des écoulements incompressibles irrotationnels à surface libre. Elles permettent de prévoir les ondes de gravité comme ondes cnoïdales, ondes de Stokes, houle, tsunamis, solitons, etc. Ces équations ont été introduites par Joseph Boussinesq en 1872 et sont un exemple d'équations aux dérivées partielles dispersives.
Loi de PoissonEn théorie des probabilités et en statistiques, la loi de Poisson est une loi de probabilité discrète qui décrit le comportement du nombre d'événements se produisant dans un intervalle de temps fixé, si ces événements se produisent avec une fréquence moyenne ou espérance connue, et indépendamment du temps écoulé depuis l'événement précédent. gauche|vignette|Chewing gums sur un trottoir. Le nombre de chewing gums sur un pavé est approximativement distribué selon une loi de Poisson.
Loi de probabilitéthumb|400px 3 répartitions.png En théorie des probabilités et en statistique, une loi de probabilité décrit le comportement aléatoire d'un phénomène dépendant du hasard. L'étude des phénomènes aléatoires a commencé avec l'étude des jeux de hasard. Jeux de dés, tirage de boules dans des urnes et jeu de pile ou face ont été des motivations pour comprendre et prévoir les expériences aléatoires. Ces premières approches sont des phénomènes discrets, c'est-à-dire dont le nombre de résultats possibles est fini ou infini dénombrable.
Processus de Poisson composéUn processus de Poisson composé, nommé d'après le mathématicien français Siméon Denis Poisson, est un processus stochastique en temps continu à droite limité à gauche (Càdlàg). C'est en particulier un processus de Lévy. Un processus de Poisson composé est un processus aléatoire indexé par le temps qui s’écrit où est un processus de Poisson et est une suite de variables aléatoires indépendantes et identiquement distribuées et indépendantes de . Comme tout processus de Lévy, le processus de Poisson composé est à accroissements indépendants et à accroissements stationnaires.