Algèbre géométrique (structure)Une algèbre géométrique est, en mathématiques, une structure algébrique, similaire à une algèbre de Clifford réelle, mais dotée d'une interprétation géométrique mise au point par David Hestenes, reprenant les travaux de Hermann Grassmann et William Kingdon Clifford (le terme est aussi utilisé dans un sens plus général pour décrire l'étude et l'application de ces algèbres : l'algèbre géométrique est l'étude des algèbres géométriques).
Clustering high-dimensional dataClustering high-dimensional data is the cluster analysis of data with anywhere from a few dozen to many thousands of dimensions. Such high-dimensional spaces of data are often encountered in areas such as medicine, where DNA microarray technology can produce many measurements at once, and the clustering of text documents, where, if a word-frequency vector is used, the number of dimensions equals the size of the vocabulary.
Liberté académiqueLa liberté académique ou liberté universitaire est la liberté que le personnel universitaire doit avoir en matière de recherche scientifique, d'enseignement et d'expression dans le cadre de leur fonction, sans subir de pressions économiques, politiques ou autres. Plusieurs organisations internationales ont adopté des textes, à la contrainte variable, pour tenter de définir et faire respecter la liberté académique. La plupart relient la liberté académique à l'autonomie institutionnelle des établissements d'enseignement.
Calcul de SchubertEn mathématiques, et plus précisément en géométrie algébrique, le calcul de Schubert est une technique introduite à la fin du par Hermann Schubert pour résoudre des problèmes de dénombrement en géométrie projective. C'est un précurseur de plusieurs théories plus modernes, comme celle des classes caractéristiques, et ses aspects algorithmiques font toujours l'objet de recherches ; la systématisation et la justification de ce calcul est l'objet du quinzième problème de Hilbert.
Nombre de GrassmannEn physique mathématique, un nombre de Grassmann — ainsi nommé d'après Hermann Günther Grassmann mais aussi appelé supernombre — est un élément de l'algèbre extérieure — ou algèbre de Grassmann — d'un espace vectoriel, le plus souvent sur les nombres complexes. Dans le cas particulier où cet espace est une droite vectorielle réelle, un tel nombre s'appelle un nombre dual. Les nombres de Grassmann ont d'abord été employés en physique pour exprimer une représentation par intégrales de chemins pour les champs de fermions, mais sont à présent largement utilisés pour décrire le sur lequel on définit une supersymétrie.
Liberté de la pressevignette|La liberté de la presse, caricature de Johann Michael Voltz, 1819. La liberté de la presse est l'un des principes fondamentaux des systèmes démocratiques qui repose sur la liberté d'opinion et la liberté d'expression. Fin 2022, 533 journalistes sont emprisonnés dans le monde, ils étaient 488 à la même date en 2021. Les cinq pays détenant en prison le plus de journalistes en 2022 sont la Chine (110), la Birmanie (62), l'Iran (47), le Vietnam (39) et la Biélorussie (31).
Identités vectoriellesDans cet article, on note pour le produit vectoriel et · pour le produit scalaire. Les identités suivantes peuvent être utiles en analyse vectorielle. (Identité de Binet-Cauchy) Dans cette section, a, b, c et d représentent des vecteurs quelconques de . Dans cet article, les conventions suivantes sont utilisées; à noter que la position (levée ou abaissée) des indices n'a pas, ici, beaucoup d'importance étant donné que l'on travaille dans un contexte euclidien.
Freedom HouseFreedom House est une organisation non-gouvernementale (ONG) financée par le gouvernement américain et basée à Washington, qui étudie l'étendue de la démocratie dans le monde. Cette organisation a été fondée en 1941, bénéficiant de Wendell Willkie et Eleanor Roosevelt en tant que premiers présidents honoraires. Selon la Freedom House elle-même : L'organisation est fondée en 1941 à New-York. Elle est notamment menée par Wendell Willkie, Eleanor Roosevelt, George Field, Dorothy Thompson, .
NilpotentEn mathématiques, un élément x d'un anneau unitaire (ou même d'un pseudo-anneau) est dit nilpotent s'il existe un entier naturel n non nul tel que x = 0. Cette définition peut être appliquée en particulier aux matrices carrées. La matrice est nilpotente parce que A = 0. On parle alors de matrice nilpotente et d'endomorphisme nilpotent. Dans l'anneau Z/9Z, la classe de 3 est nilpotente parce que 3 est congru à 0 modulo 9. L'anneau des coquaternions contient un cône de nilpotents.
Nombre dualEn mathématiques et en algèbre abstraite, les nombres duaux sont une algèbre associative unitaire commutative à deux dimensions sur les nombres réels, apparaissant à partir des réels par adjonction d'un nouvel élément ε avec la propriété ε = 0 (ε est un élément nilpotent). Ils ont été introduits par William Clifford en 1873. Ils sont notamment utiles pour fournir un outil de dérivation automatique. Ils ont également des applications en physique. Tout nombre dual s'écrit de façon unique sous la forme z = a + bε avec a et b réels.