Théorème des coefficients universelsLe théorème des coefficients universels est un résultat d'algèbre homologique portant sur les groupes d'homologie et de cohomologie d'un complexe de chaînes. Ce théorème comporte deux volets : d'une part il relie entre elles homologie et cohomologie, et d'autre part il explique le lien entre la (co)homologie à coefficients dans et la (co)homologie à coefficients dans un groupe . Une utilisation courante de ce théorème est de calculer les groupes de cohomologie à coefficient dans un groupe via le calcul de la cohomologie dans , qui sont faciles à calculer (par exemple au moyen d'une décomposition cellulaire).
Espace de suites ℓpEn mathématiques, l'espace est un exemple d'espace vectoriel, constitué de suites à valeurs réelles ou complexes et qui possède, pour 1 ≤ p ≤ ∞, une structure d'espace de Banach. Considérons l'espace vectoriel réel R, c'est-à-dire l'espace des n-uplets de nombres réels. La norme euclidienne d'un vecteur est donnée par : Mais pour tout nombre réel p ≥ 1, on peut définir une autre norme sur R, appelée la p-norme, en posant : pour tout vecteur . Pour tout p ≥ 1, R muni de la p-norme est donc un espace vectoriel normé.
Translation of axesIn mathematics, a translation of axes in two dimensions is a mapping from an xy-Cartesian coordinate system to an x'y'-Cartesian coordinate system in which the x' axis is parallel to the x axis and k units away, and the y' axis is parallel to the y axis and h units away. This means that the origin O' of the new coordinate system has coordinates (h, k) in the original system. The positive x' and y' directions are taken to be the same as the positive x and y directions.
Derived algebraic geometryDerived algebraic geometry is a branch of mathematics that generalizes algebraic geometry to a situation where commutative rings, which provide local charts, are replaced by either differential graded algebras (over ), simplicial commutative rings or -ring spectra from algebraic topology, whose higher homotopy groups account for the non-discreteness (e.g., Tor) of the structure sheaf. Grothendieck's scheme theory allows the structure sheaf to carry nilpotent elements.
N-connexitéDans le domaine mathématique de la topologie algébrique et plus précisément en théorie de l'homotopie, la n-connexité est une généralisation de la connexité par arcs (cas n = 0) et de la connexité simple (cas n = 1) : un espace topologique est dit n-connexe si son homotopie est triviale jusqu'au degré n et une application continue est n-connexe si elle induit des isomorphismes en homotopie « presque » jusqu'au degré n. Pour tout entier naturel n, un espace X est dit n-connexe s'il est connexe par arcs et si ses n premiers groupes d'homotopie π(X) (0 < k ≤ n) sont triviaux.
FibréEn mathématiques, un espace fibré est, intuitivement, un espace topologique qui est localement le produit de deux espaces — appelés la base et la fibre — mais en général pas globalement. Par exemple, le ruban de Möbius est un fibré de base un cercle et de fibre un segment de droite : il ressemble localement au produit d'un cercle par un segment, mais pas globalement comme le cylindre Plus précisément, l'espace total du fibré est muni d'une projection continue sur la base, telle que la de chaque point soit homéomorphe à la fibre.
Espace contractileEn mathématiques, un espace topologique est dit contractile s'il est homotopiquement équivalent à un point. Tous ses groupes d'homotopie sont donc triviaux, ainsi que ses groupes d'homologie de degré > 0. Tout espace vectoriel normé (ou même : tout espace vectoriel topologique sur R) est contractile, à commencer par la droite réelle et le plan complexe. Plus généralement, toute partie étoilée d'un tel espace (en particulier : tout convexe non vide, comme un intervalle réel ou un disque) est clairement contractile.
Espace T1En mathématiques, un espace accessible (ou espace T, ou de Fréchet) est un cas particulier d'espace topologique. Il s'agit d'un exemple d'axiome de séparation. Un espace topologique E est T si pour tout couple (x, y) d'éléments de E distincts, il existe un ouvert contenant x et pas y. Soit E un espace topologique.
Groupes d'homotopie des sphèresEn mathématiques, et plus spécifiquement en topologie algébrique, les groupes d'homotopie des sphères sont des invariants qui décrivent, en termes algébriques, comment des sphères de dimensions et égales ou différentes peuvent s'enrouler l'une sur l'autre. La notion, définie au départ pour des sphères de dimension 1 (cercles) et de dimension 2, se généralise à des sphères de toutes dimensions (les -sphères).
Catégorie de modèlesEn mathématiques, plus précisément en théorie de l'homotopie, une catégorie de modèles est une catégorie dotée de trois classes de morphismes, appelés équivalences faibles, fibrations et cofibrations, satisfaisant à certains axiomes. Ceux-ci sont abstraits du comportement homotopique des espaces topologiques et des complexes de chaînes. La théorie des catégories de modèles est une sous-branche de la théorie des catégories et a été introduite par Daniel Quillen en 1967 pour généraliser l'étude de l'homotopie aux catégories et ainsi avoir de nouveaux outils pour travailler avec l'homotopie dans les espaces topologiques.