E8 latticeIn mathematics, the E_8 lattice is a special lattice in R^8. It can be characterized as the unique positive-definite, even, unimodular lattice of rank 8. The name derives from the fact that it is the root lattice of the E_8 root system. The norm of the E_8 lattice (divided by 2) is a positive definite even unimodular quadratic form in 8 variables, and conversely such a quadratic form can be used to construct a positive-definite, even, unimodular lattice of rank 8. The existence of such a form was first shown by H.
Non-line-of-sight propagationNon-line-of-sight (NLOS) radio propagation occurs outside of the typical line-of-sight (LOS) between the transmitter and receiver, such as in ground reflections. Near-line-of-sight (also NLOS) conditions refer to partial obstruction by a physical object present in the innermost Fresnel zone. Obstacles that commonly cause NLOS propagation include buildings, trees, hills, mountains, and, in some cases, high voltage electric power lines.
Loi commutativeEn mathématiques, et plus précisément en algèbre générale, une loi de composition interne sur un ensemble E est dite commutative si pour tous x et y dans E, En notant , la commutativité se traduit par le diagramme commutatif suivant : Fichier:Commutativité.png Les exemples les plus simples de lois commutatives sont sans doute l'addition et la multiplication des entiers naturels. L'addition et la multiplication des nombres réels et des nombres complexes, l'addition des vecteurs, l'intersection et la réunion des ensembles sont également des lois commutatives.
Compact elementIn the mathematical area of order theory, the compact elements or finite elements of a partially ordered set are those elements that cannot be subsumed by a supremum of any non-empty directed set that does not already contain members above the compact element. This notion of compactness simultaneously generalizes the notions of finite sets in set theory, compact sets in topology, and finitely generated modules in algebra. (There are other notions of compactness in mathematics.
Algèbre de HeytingEn mathématiques, une algèbre de Heyting est une structure algébrique introduite en 1930 par le mathématicien néerlandais Arend Heyting pour rendre compte formellement de la logique intuitionniste de Brouwer, alors récemment développée. Les algèbres de Heyting sont donc pour la logique intuitionniste analogue à ce que sont des algèbres de Boole pour la logique classique : un modèle formel permettant d'en fixer les propriétés.
Anneau à PGCDEn algèbre commutative, un anneau à PGCD, ou plus rarement anneau de Gauss, est un anneau commutatif unitaire dans lequel tout couple d'éléments non nuls possède un plus grand diviseur commun. Dans un anneau quelconque, l'existence d'un tel PGCD n'est pas toujours acquise. Les anneaux intègres à PGCD représentent une classe d'anneaux aux propriétés arithmétiques intéressantes à tel point qu'il est fréquent que les anneaux à PGCD ne soient étudiés que dans les anneaux intègres.
Algebraic operationIn mathematics, a basic algebraic operation is any one of the common operations of arithmetic, which include addition, subtraction, multiplication, division, raising to a whole number power, and taking roots (fractional power). These operations may be performed on numbers, in which case they are often called arithmetic operations. They may also be performed, in a similar way, on variables, algebraic expressions, and more generally, on elements of algebraic structures, such as groups and fields.
Distributive latticeIn mathematics, a distributive lattice is a lattice in which the operations of join and meet distribute over each other. The prototypical examples of such structures are collections of sets for which the lattice operations can be given by set union and intersection. Indeed, these lattices of sets describe the scenery completely: every distributive lattice is—up to isomorphism—given as such a lattice of sets. As in the case of arbitrary lattices, one can choose to consider a distributive lattice L either as a structure of order theory or of universal algebra.
Generalized permutation matrixIn mathematics, a generalized permutation matrix (or monomial matrix) is a matrix with the same nonzero pattern as a permutation matrix, i.e. there is exactly one nonzero entry in each row and each column. Unlike a permutation matrix, where the nonzero entry must be 1, in a generalized permutation matrix the nonzero entry can be any nonzero value. An example of a generalized permutation matrix is An invertible matrix A is a generalized permutation matrix if and only if it can be written as a product of an invertible diagonal matrix D and an (implicitly invertible) permutation matrix P: i.
Élément symétriqueEn mathématiques, la notion d'élément symétrique généralise les concepts d'opposé en rapport avec l'addition et d'inverse en rapport avec la multiplication. Soit E un ensemble muni d'une loi de composition interne admettant un élément neutre . Soient deux éléments et de E. Si , est dit élément symétrique à gauche de et est dit élément symétrique à droite de . Si , est dit élément symétrique de .