Processus de LévyEn théorie des probabilités, un processus de Lévy, nommé d'après le mathématicien français Paul Lévy, est un processus stochastique en temps continu, continu à droite limité à gauche (càdlàg), partant de 0, dont les accroissements sont stationnaires et indépendants (cette notion est expliquée ci-dessous). Les exemples les plus connus sont le processus de Wiener et le processus de Poisson.
Loi log-normaleEn théorie des probabilités et statistique, une variable aléatoire X est dite suivre une loi log-normale de paramètres et si la variable suit une loi normale d'espérance et de variance . Cette loi est parfois appelée loi de Galton. Elle est habituellement notée dans le cas d'une seule variable ou dans un contexte multidimensionnel. Une variable peut être modélisée par une loi log-normale si elle est le résultat de la multiplication d'un grand nombre de petits facteurs indépendants.
Équation de SchrödingerL'équation de Schrödinger, conçue par le physicien autrichien Erwin Schrödinger en 1925, est une équation fondamentale en mécanique quantique. Elle décrit l'évolution dans le temps d'une particule massive non relativiste, et remplit ainsi le même rôle que la relation fondamentale de la dynamique en mécanique classique. Au début du , il était devenu clair que la lumière présentait une dualité onde-corpuscule, c'est-à-dire qu'elle pouvait se manifester, selon les circonstances, soit comme une particule, le photon, soit comme une onde électromagnétique.
Écart typethumb|Exemple de deux échantillons ayant la même moyenne (100) mais des écarts types différents illustrant l'écart type comme mesure de la dispersion autour de la moyenne. La population rouge a un écart type (SD = standard deviation) de 10 et la population bleue a un écart type de 50. En mathématiques, l’écart type (aussi orthographié écart-type) est une mesure de la dispersion des valeurs d'un échantillon statistique ou d'une distribution de probabilité.
Variation quadratiqueEn mathématiques, la variation quadratique est utilisée dans l'analyse des processus stochastiques, comme le mouvement brownien et autres martingales. La variation quadratique est un type de variation d'un processus. Si est un processus stochastique à valeurs réelles défini sur un espace probabilisé et avec un indice de temps qui parcourt les nombres réels positifs, sa variation quadratique est le processus, noté , défini par : où parcourt les subdivisions de l'intervalle et la norme de la subdivision est son pas.
Intégrale d'Itōvignette|Tracé d'une trajectoire échantillon d'un processus de Wiener, ou mouvement brownien, B, ainsi que son intégrale d'Itô par rapport à lui-même. L'intégration par parties ou le lemme d'Itô montre que l'intégrale est égale à (B2 - t)/2. L'intégrale d'Itô, appelée en l'honneur du mathématicien Kiyoshi Itô, est un des outils fondamentaux du calcul stochastique. Elle a d'importantes applications en mathématique financière et pour la résolution des équations différentielles stochastiques.
Modèle statistiqueUn modèle statistique est une description mathématique approximative du mécanisme qui a généré les observations, que l'on suppose être un processus stochastique et non un processus déterministe. Il s’exprime généralement à l’aide d’une famille de distributions (ensemble de distributions) et d’hypothèses sur les variables aléatoires X1, . . ., Xn. Chaque membre de la famille est une approximation possible de F : l’inférence consiste donc à déterminer le membre qui s’accorde le mieux avec les données.
Loi uniforme continueEn théorie des probabilités et en statistiques, les lois uniformes continues forment une famille de lois de probabilité à densité. Une telle loi est caractérisée par la propriété suivante : tous les intervalles de même longueur inclus dans le support de la loi ont la même probabilité. Cela se traduit par le fait que la densité de probabilité d'une loi uniforme continue est constante sur son support. Elles constituent donc une généralisation de la notion d'équiprobabilité dans le cas continu pour des variables aléatoires à densité ; le cas discret étant couvert par les lois uniformes discrètes.
Bruit gaussienEn traitement du signal, un bruit gaussien est un bruit dont la densité de probabilité est une distribution gaussienne (loi normale). L'adjectif gaussien fait référence au mathématicien, astronome et physicien allemand Carl Friedrich Gauss. La densité de probabilité d'une variable aléatoire gaussienne est la fonction : où représente le niveau de gris, la valeur de gris moyenne et son écart type. Un cas particulier est le bruit blanc gaussien, dans lequel les valeurs à toute paire de temps sont identiquement distribuées et statistiquement indépendantes (et donc ).
Infinite divisibility (probability)In probability theory, a probability distribution is infinitely divisible if it can be expressed as the probability distribution of the sum of an arbitrary number of independent and identically distributed (i.i.d.) random variables. The characteristic function of any infinitely divisible distribution is then called an infinitely divisible characteristic function. More rigorously, the probability distribution F is infinitely divisible if, for every positive integer n, there exist n i.i.d. random variables Xn1, .