Approximation affineEn mathématiques, une approximation affine est une approximation d'une fonction au voisinage d'un point à l'aide d'une fonction affine. Une approximation affine sert principalement à simplifier un problème dont on peut obtenir une solution approchée. Deux façons classiques d'obtenir une approximation affine de fonction passent par l'interpolation ou le développement limité à l’ordre 1.
Interpolation polynomialeEn mathématiques, en analyse numérique, l'interpolation polynomiale est une technique d'interpolation d'un ensemble de données ou d'une fonction par un polynôme. En d'autres termes, étant donné un ensemble de points (obtenu, par exemple, à la suite d'une expérience), on cherche un polynôme qui passe par tous ces points, p(xi) = yi, et éventuellement vérifie d'autres conditions, de degré si possible le plus bas. Cependant, dans le cas de l'interpolation lagrangienne, par exemple, le choix des points d'interpolation est critique.
Formule de Stirlingvignette La formule de Stirling, du nom du mathématicien écossais James Stirling, donne un équivalent de la factorielle d'un entier naturel n quand n tend vers l'infini : que l'on trouve souvent écrite ainsi : où le nombre e désigne la base de l'exponentielle. C'est Abraham de Moivre qui a initialement démontré la formule suivante : où C est une constante réelle (non nulle). L'apport de Stirling fut d'attribuer la valeur C = à la constante et de donner un développement de ln(n!) à tout ordre.
ApproximationUne approximation est une représentation imprécise ayant toutefois un lien étroit avec la quantité ou l’objet qu’elle reflète : approximation d’un nombre (de π par 3,14, de la vitesse instantanée d’un véhicule par sa vitesse moyenne entre deux points), d’une fonction mathématique, d’une solution d’un problème d’optimisation, d’une forme géométrique, d’une loi physique. Lorsqu’une partie de l’information nécessaire fait défaut, une approximation peut se substituer à une représentation exacte.
Approximation BKWEn physique, l'approximation BKW (en l'honneur de Léon Brillouin, Hendrik Anthony Kramers et Gregor Wentzel) est une méthode développée en 1926 qui permet d'étudier le régime semi-classique d'un système quantique. La fonction d'onde est développée asymptotiquement au premier ordre de la puissance du quantum d'action . L'idée de base de la méthode BKW est que l'équation de Schrödinger se dérive de l'équation de propagation des ondes.
Approximation de BornL'approximation de Born est une approximation faite en théorie de la diffusion, en particulier en mécanique quantique, pour des potentiels diffuseurs très peu denses. L'approximation de Born au premier ordre consiste à ne tenir compte que de l'onde incidente et des ondes diffusées par une seule interaction avec le potentiel dans la description de l'onde diffusée totale. Elle est nommée d'après Max Born. Il s'agit de la méthode de perturbations appliquée à la diffusion sur un corps étendu.
Forme linéaireEn algèbre linéaire, une forme linéaire sur un espace vectoriel est une application linéaire sur son corps de base. En dimension finie, elle peut être représentée par une matrice ligne qui permet d’associer à son noyau une équation cartésienne. Dans le cadre du calcul tensoriel, une forme linéaire est aussi appelée covecteur, en lien avec l’action différente des matrices de changement de base.
Approximation de GaussL'approximation de Gauss nommée d'après le physicien allemand Carl Friedrich Gauss, est l'approximation linéaire de l'optique géométrique obtenue dans certaines conditions appelées conditions de Gauss. Cette approximation, souvent applicable en pratique, permet de simplifier les relations mathématiques de l'optique géométrique. On obtient dans ces conditions un stigmatisme approché. Les écarts à cette approximation rencontrés dans les instruments d'optique sont appelés aberrations géométriques.
Approximation de Born-OppenheimerL’approximation de Born et Oppenheimer permet de simplifier drastiquement l’équation de Schrödinger pour le calcul de la fonction d'onde d'une molécule. Elle consiste à découpler le mouvement des électrons de celui des noyaux, du fait de leurs masses très différentes. En effet, à cause du fait que la masse d'un nucléon soit environ (~ ) fois plus élevée que celle d'un électron, les noyaux ont un mouvement beaucoup plus lent que les électrons.
Transformation de Fourier discrèteEn mathématiques, la transformation de Fourier discrète (TFD) sert à traiter un signal numérique. Elle constitue un équivalent discret (c'est-à-dire pour un signal défini à partir d'un nombre fini d'échantillons) de la transformation de Fourier (continue) utilisée pour traiter un signal analogique. Plus précisément, la TFD est la représentation spectrale discrète dans le domaine des fréquences d'un signal échantillonné. La transformation de Fourier rapide est un algorithme particulier de calcul de la transformation de Fourier discrète.