Entropie de ShannonEn théorie de l'information, l'entropie de Shannon, ou plus simplement entropie, est une fonction mathématique qui, intuitivement, correspond à la quantité d'information contenue ou délivrée par une source d'information. Cette source peut être un texte écrit dans une langue donnée, un signal électrique ou encore un fichier informatique quelconque (suite d'octets). Elle a été introduite par Claude Shannon. Du point de vue d'un récepteur, plus la source émet d'informations différentes, plus l'entropie (ou incertitude sur ce que la source émet) est grande.
Rule-based machine learningRule-based machine learning (RBML) is a term in computer science intended to encompass any machine learning method that identifies, learns, or evolves 'rules' to store, manipulate or apply. The defining characteristic of a rule-based machine learner is the identification and utilization of a set of relational rules that collectively represent the knowledge captured by the system. This is in contrast to other machine learners that commonly identify a singular model that can be universally applied to any instance in order to make a prediction.
Central processing unitA central processing unit (CPU)—also called a central processor or main processor—is the most important processor in a given computer. Its electronic circuitry executes instructions of a computer program, such as arithmetic, logic, controlling, and input/output (I/O) operations. This role contrasts with that of external components, such as main memory and I/O circuitry, and specialized coprocessors such as graphics processing units (GPUs). The form, design, and implementation of CPUs have changed over time, but their fundamental operation remains almost unchanged.
Processeur graphiqueUn processeur graphique, ou GPU (de l'anglais Graphics Processing Unit), également appelé coprocesseur graphique sur certains systèmes, est une unité de calcul assurant les fonctions de calcul d'image. Il peut être présent sous forme de circuit intégré (ou puce) indépendant, soit sur une carte graphique ou sur la carte mère, ou encore intégré au même circuit intégré que le microprocesseur général (on parle d'un SoC lorsqu'il comporte toutes les puces spécialisées).
Capacité d'un canalLa capacité d'un canal, en génie électrique, en informatique et en théorie de l'information, est la limite supérieure étroite du débit auquel l'information peut être transmise de manière fiable sur un canal de communication. Suivant les termes du théorème de codage du canal bruyant, la capacité d'un canal donné est le débit d'information le plus élevé (en unités d'information par unité de temps) qui peut être atteint avec une probabilité d'erreur arbitrairement faible. La théorie de l'information, développée par Claude E.
Mémoire à court termeLa mémoire à court terme (MCT) désigne en psychologie le type de mémoire qui permet de retenir et de réutiliser une quantité limitée d'informations pendant un temps relativement court, environ une demi-minute. Un grand nombre de recherches en psychologie cognitive ont cherché à déterminer les caractéristiques (capacité, durée, fonctionnement) et le rôle de la mémoire à court terme dans la cognition. Le concept de mémoire à court terme est assez ancien en psychologie scientifique.
Attention (machine learning)Machine learning-based attention is a mechanism mimicking cognitive attention. It calculates "soft" weights for each word, more precisely for its embedding, in the context window. It can do it either in parallel (such as in transformers) or sequentially (such as recursive neural networks). "Soft" weights can change during each runtime, in contrast to "hard" weights, which are (pre-)trained and fine-tuned and remain frozen afterwards. Multiple attention heads are used in transformer-based large language models.
Statistique multivariéeEn statistique, les analyses multivariées ont pour caractéristique de s'intéresser à des lois de probabilité à plusieurs variables. Les analyses bivariées sont des cas particuliers à deux variables. Les analyses multivariées sont très diverses selon l'objectif recherché, la nature des variables et la mise en œuvre formelle. On peut identifier deux grandes familles : celle des méthodes descriptives (visant à structurer et résumer l'information) et celle des méthodes explicatives visant à expliquer une ou des variables dites « dépendantes » (variables à expliquer) par un ensemble de variables dites « indépendantes » (variables explicatives).
Modèle d'IsingLe modèle d'Ising est un modèle de physique statistique qui a été adapté à divers phénomènes caractérisés par des interactions locales de particules à deux états. L'exemple principal est le ferromagnétisme pour lequel le modèle d'Ising est un modèle sur réseau de moments magnétiques, dans lequel les particules sont toujours orientées suivant le même axe spatial et ne peuvent prendre que deux valeurs. Ce modèle est parfois appelé modèle de Lenz-Ising en référence aux physiciens Wilhelm Lenz et Ernst Ising.
Loi normale multidimensionnelleEn théorie des probabilités, on appelle loi normale multidimensionnelle, ou normale multivariée ou loi multinormale ou loi de Gauss à plusieurs variables, la loi de probabilité qui est la généralisation multidimensionnelle de la loi normale. gauche|vignette|Différentes densités de lois normales en un dimension. gauche|vignette|Densité d'une loi gaussienne en 2D. Une loi normale classique est une loi dite « en cloche » en une dimension.