Thompson groupsIn mathematics, the Thompson groups (also called Thompson's groups, vagabond groups or chameleon groups) are three groups, commonly denoted , that were introduced by Richard Thompson in some unpublished handwritten notes in 1965 as a possible counterexample to the von Neumann conjecture. Of the three, F is the most widely studied, and is sometimes referred to as the Thompson group or Thompson's group. The Thompson groups, and F in particular, have a collection of unusual properties that have made them counterexamples to many general conjectures in group theory.
Partie génératrice d'un groupeEn théorie des groupes, une partie génératrice d'un groupe est une partie A de ce groupe telle que tout élément du groupe s'écrit comme produit d'un nombre fini d'éléments de A et de leurs inverses. Un groupe est dit de type fini lorsqu'il admet une partie génératrice finie. Un groupe engendré par un seul élément est isomorphe soit au groupe additif des entiers relatifs (Z, +), soit à un groupe additif de classes modulo n (Z/nZ, +) ; on dit que c'est un groupe monogène.
Groupe résolubleEn mathématiques, un groupe résoluble est un groupe qui peut être construit à partir de groupes abéliens par une suite finie d'extensions. Théorème d'Abel (algèbre) La théorie des groupes tire son origine de la recherche de solutions générales (ou de leur absence) pour les racines des polynômes de degré 5 ou plus. Le concept de groupe résoluble provient d'une propriété partagée par les groupes d'automorphismes des polynômes dont les racines peuvent être exprimées en utilisant seulement un nombre fini d'opérations élémentaires (racine n-ième, addition, multiplication, ).
3-variétéEn mathématiques, une 3-variété est une variété de dimension 3, au sens des variétés topologiques, ou différentielles (en dimension 3, ces catégories sont équivalentes). Certains phénomènes sont liés spécifiquement à la dimension 3, si bien qu'en cette dimension, des techniques particulières prévalent, qui ne se généralisent pas aux dimensions supérieures.
Groupe algébriqueEn géométrie algébrique, la notion de groupe algébrique est un équivalent des groupes de Lie en géométrie différentielle ou complexe. Un groupe algébrique est une variété algébrique munie d'une loi de groupe compatible avec sa structure de variété algébrique. Un groupe algébrique sur un corps (commutatif) K est une variété algébrique sur munie : d'un morphisme de K-variétés algébriques (appelé aussi multiplication) .
Théorème des facteurs invariantsEn mathématiques, le théorème des facteurs invariants porte sur les modules de type fini sur les anneaux principaux. Les facteurs invariants non inversibles sont des obstructions à l'inversibilité des matrices qui n'apparaissent pas dans la théorie des espaces vectoriels. Leur calcul a de nombreuses applications : par exemple trouver la classe d'isomorphie d'un groupe abélien de type fini à partir d'une présentation de celui-ci. Dans un cadre précis, le théorème des facteurs invariants se particularise en théorèmes de réduction d'endomorphisme.
Groupe résiduellement finiEn mathématiques, et tout particulièrement en théorie combinatoire des groupes, un groupe résiduellement fini est un groupe qui peut en quelque sorte être « approché » par des groupes finis. L'adjectif « résiduel » s'applique aussi à d'autres propriétés, comme être résiduellement nilpotent, résiduellement libre. Un groupe est résiduellement fini s'il existe, pour tout élément distinct de l'élément neutre, un sous-groupe distingué d'indice fini ne contenant pas .
Groupe classiqueEn mathématiques, les groupes classiques sont différentes familles de groupes de transformations liées à l'algèbre linéaire, principalement les groupes linéaires, orthogonaux, symplectiques et unitaires. Ces groupes peuvent aussi être présentés comme groupes de matrices inversibles, et des quotients de ceux-ci. Les groupes matrices carrées d'ordre n (GL(n, R)), GL(n, C)), le groupe des matrices orthogonales d'ordre n (O(n)) et le groupe des matrices unitaires d'ordre n (U(n)) sont des exemples explicites de groupes classiques.
Small cancellation theoryIn the mathematical subject of group theory, small cancellation theory studies groups given by group presentations satisfying small cancellation conditions, that is where defining relations have "small overlaps" with each other. Small cancellation conditions imply algebraic, geometric and algorithmic properties of the group. Finitely presented groups satisfying sufficiently strong small cancellation conditions are word hyperbolic and have word problem solvable by Dehn's algorithm.
Groupe de type de LieEn mathématiques, un groupe de type de Lie G(k) est un groupe (non nécessairement fini) de points rationnels d'un groupe algébrique linéaire réductif G à valeur dans le corps commutatif k. La classification des groupes simples finis montre que les groupes de types de Lie finis forment l'essentiel des groupes finis simples. Des cas particuliers incluent les groupes classiques, les groupes de Chevalley, les groupes de Steinberg et les groupes de Suzuki-Ree.