Géométrie moléculaire plane carréeEn chimie, une géométrie moléculaire plane carrée ou plan-carré est la géométrie des molécules où un atome central, noté A, est lié à quatre atomes, groupes d'atomes ou ligands, notés X, aux sommets d'un carré plan. Elle se rencontre en particulier pour les atomes centraux liés à quatre substituants mais possédant aussi deux doublets non-liants, notés E, qui viennent se placer de part et d'autre du plan. Cette configuration est notée AX4E2 selon la théorie VSEPR.
Anneau (mathématiques)vignette|Richard Dedekind - 1870 En algèbre, un anneau est un ensemble muni de deux lois de composition interne appelées addition et multiplication, qui vérifient des propriétés analogues à celles de ces opérations sur les entiers relatifs. Plus précisément, deux définitions sont représentées dans la littérature mathématique, selon la considération d'un élément neutre : la majorité des sources récentes définissent un « anneau » comme un anneau unitaire, avec la multiplication ayant un élément neutre ; tandis que, selon de nombreux ouvrages, la présence d'une unité multiplicative n'est pas requise, et ce type d'anneau est ailleurs dénommé pseudo-anneau.
Anneau localEn mathématiques, et plus particulièrement en algèbre commutative, un anneau local est un anneau commutatif possédant un unique idéal maximal. En géométrie algébrique, les anneaux locaux représentent les fonctions définies au voisinage d'un point donné. Pour tout anneau A, les propriétés suivantes sont équivalentes : A est local ; ses éléments non inversibles forment un idéal (qui sera alors l'idéal maximal de A et coïncidera avec son radical de Jacobson) ; ses éléments non inversibles appartiennent à un même idéal propre ; pour tout élément a de A, soit a soit 1 – a est inversible ; pour tout élément a de A, soit a soit 1 – a est inversible à gauche ; il existe un idéal maximal M tel que pour tout élément a de M, 1 + a est inversible.
Morphisme d'anneauxUn morphisme d'anneaux est une application entre deux anneaux (unitaires) A et B, compatible avec les lois de ces anneaux et qui envoie le neutre multiplicatif de A sur le neutre multiplicatif de B. Un morphisme d'anneaux est une application f entre deux anneaux (unitaires) A et B qui vérifie les trois propriétés suivantes : Pour tous a, b dans A : f(a + b) = f(a) + f(b) f(a ∙ b) = f(a) ∙ f(b) f(1A) = 1B.
Anneau quotientEn mathématiques, un anneau quotient est un anneau qu'on construit sur l'ensemble quotient d'un anneau par un de ses idéaux bilatères. Soit A un anneau. L'addition et la multiplication de A sont compatibles avec une relation d'équivalence sur A si (et seulement si) celle-ci est de la forme : x ~ y ⇔ x – y ∈ I, pour un certain idéal bilatère I de A. On peut alors munir l'ensemble quotient A/I de l'addition et de la multiplication quotients de celles de A : Ceci munit A/I d'une structure d'anneau, appelé l'anneau quotient de A par I (son groupe additif est le groupe quotient de (A, +) par I).
Géométrie moléculaireLa géométrie moléculaire ou structure moléculaire désigne l'arrangement 3D des atomes dans une molécule. . La géométrie moléculaire peut être établie à l'aide de différents outils, dont la spectroscopie et la diffraction. Les spectroscopies infrarouge, rotationnelle et Raman peuvent donner des informations relativement à la géométrie d'une molécule grâce aux absorbances vibrationnelles et rotationnelles. Les diffractométries de rayons X, de neutrons et des électrons peuvent donner des informations à propos des solides cristallins.
Règle des 18 électronsLa règle des 18 électrons est une règle empirique chimique utilisée principalement pour prédire et rationaliser les formules des complexes de métaux de transition stables, en particulier les composés organométalliques. La règle est basée sur le fait que les orbitales de valence dans la configuration électronique des métaux de transition se composent de cinq orbitales ( n −1)d , une orbitale n s et trois orbitales n p , où n est le nombre quantique principal.
Catenary ringIn mathematics, a commutative ring R is catenary if for any pair of prime ideals p, q, any two strictly increasing chains p = p0 ⊂ p1 ⊂ ... ⊂ pn = q of prime ideals are contained in maximal strictly increasing chains from p to q of the same (finite) length. In a geometric situation, in which the dimension of an algebraic variety attached to a prime ideal will decrease as the prime ideal becomes bigger, the length of such a chain n is usually the difference in dimensions.
Potentiel hydrogèneLe potentiel hydrogène, noté pH, est une mesure de l'activité chimique des protons ou ions hydrogène en solution. Notamment, en solution aqueuse, ces ions sont présents sous forme d'ions hydronium (ion hydraté, ou ). Le pH sert à mesurer l’acidité ou la basicité d’une solution. Ainsi, dans un milieu aqueux à : une solution de pH = 7 est dite neutre ; une solution de pH < 7 est dite acide ; plus son pH diminue, plus elle est acide ; une solution de pH > 7 est dite basique ; plus son pH augmente, plus elle est basique.
Polynôme formelEn algèbre, le terme de polynôme formel, ou simplement polynôme, est le nom générique donné aux éléments d'une structure construite à partir d'un ensemble de nombres. On considère un ensemble A de nombres, qui peut être celui des entiers ou des réels, et on lui adjoint un élément X, appelé indéterminée. La structure est constituée par les nombres, le polynôme X, les puissances de X multipliées par un nombre, aussi appelés monômes (de la forme aX), ainsi que les sommes de monômes. La structure est généralement notée A[X].