Generalized hypergeometric functionIn mathematics, a generalized hypergeometric series is a power series in which the ratio of successive coefficients indexed by n is a rational function of n. The series, if convergent, defines a generalized hypergeometric function, which may then be defined over a wider domain of the argument by analytic continuation. The generalized hypergeometric series is sometimes just called the hypergeometric series, though this term also sometimes just refers to the Gaussian hypergeometric series.
Intégration par partiesEn mathématiques, l'intégration par parties (parfois abrégée en IPP) est une méthode qui permet de transformer l'intégrale d'un produit de fonctions en d'autres intégrales. Elle est fréquemment utilisée pour calculer une intégrale (ou une primitive) d'un produit de fonctions. Cette formule peut être considérée comme une version intégrale de la règle du produit. Le mathématicien Brook Taylor a découvert l'intégration par parties, publiant d'abord l'idée en 1715.
Prolongement analytiqueEn analyse complexe, la théorie du prolongement analytique détaille l'ensemble des propriétés et techniques relatives au prolongement des fonctions holomorphes (ou analytiques). Elle considère d'abord la question du prolongement dans le plan complexe. Puis elle aborde des formes plus générales d'extension qui permettent de prendre en compte les singularités et les complications topologiques qui les accompagnent. La théorie fait alors intervenir soit le concept assez ancien et peu opérant de fonction multiforme, soit le concept plus puissant de surface de Riemann.
Suite récurrente linéaireEn mathématiques, on appelle suite récurrente linéaire d’ordre p toute suite à valeurs dans un corps commutatif K (par exemple R ou C ; on ne se placera que dans ce cas dans cet article) définie pour tout par une relation de récurrence linéaire de la forme où , , ... sont p scalaires fixés de K ( non nul). Une telle suite est entièrement déterminée par la donnée de ses p premiers termes et par la relation de récurrence. Les suites récurrentes linéaires d’ordre 1 sont les suites géométriques.
Série géométriquethumb|Preuve sans mots de l'égalité1/2 + 1/4 + 1/8 + 1/16 + ⋯ = 1 thumb|Illustration de l'égalité 1/4 + 1/16 + 1/64 + 1/256 + ⋯ = 1/3 :chacun des carrés violets mesure 1/4 de la surface du grand carré le plus proche (1/2× = 1/4, 1/4×1/4 = 1/16, etc.). Par ailleurs, la somme des aires des carrés violets est égale à un tiers de la superficie du grand carré. En mathématiques, la série géométrique est l'un des exemples de série numérique les plus simples.
Décomposition en éléments simplesEn mathématiques, la décomposition en éléments simples d'une fraction rationnelle (parfois appelée décomposition en fractions partielles) est son expression comme somme d'un polynôme et de fractions J/H où H est un polynôme irréductible et J un polynôme de degré strictement inférieur à celui de H. Cette décomposition est utilisée dans le calcul intégral pour faciliter la recherche des primitives de la fonction rationnelle associée. Elle est aussi utilisée pour calculer des transformées de Laplace inverses.
Stirling numbers of the first kindIn mathematics, especially in combinatorics, Stirling numbers of the first kind arise in the study of permutations. In particular, the Stirling numbers of the first kind count permutations according to their number of cycles (counting fixed points as cycles of length one). The Stirling numbers of the first and second kind can be understood as inverses of one another when viewed as triangular matrices. This article is devoted to specifics of Stirling numbers of the first kind.
Suite de LucasEn mathématiques, les suites de Lucas U(P, Q) et V(P, Q) associées à deux entiers P et Q sont deux suites récurrentes linéaires d'ordre 2 à valeurs entières qui généralisent respectivement la suite de Fibonacci et celle de Fibonacci-Lucas, correspondant aux valeurs P = 1 et Q = –1. Elles doivent leur nom au mathématicien français Édouard Lucas. Soient P et Q deux entiers non nuls tels que (pour éviter les cas dégénérés). Les suites de Lucas U(P, Q) et V(P, Q) sont définies par les relations de récurrence linéaire et Notons l'une des deux racines carrées de Δ (éventuellement dans C).
Produit infiniEn mathématiques, étant donné une suite de nombres complexes , on définit le produit infini de la suite comme la limite, si elle existe, des produits partiels quand N tend vers l'infini ; De même qu'une série utilise la lettre Σ, un produit infini utilise la lettre grecque Π (pi majuscule) : Dans le cas où tous les termes de la suite sont non nuls, on dit que le produit infini, noté , converge quand la suite des produits partiels converge vers une limite non nulle ; sinon, on dit que le produit infini diverg
Fonction polylogarithmeLa fonction polylogarithme (aussi connue sous le nom de fonction de Jonquière) est une fonction spéciale qui peut être définie pour tout s et z < 1 par : Le paramètre s et l'argument z sont pris sur l'ensemble C des nombres complexes. Les cas particuliers s = 2 et s = 3 sont appelés le polylogarithme d'ordre 2 ou dilogarithme et le polylogarithme d'ordre 3 ou trilogarithme respectivement. Le polylogarithme apparaît aussi dans la forme fermée de l'intégrale de la distribution de Fermi-Dirac et la distribution de Bose-Einstein et est quelquefois connue comme l'intégrale de Fermi-Dirac ou l'intégrale de Bose-Einstein.