Semisimple representationIn mathematics, specifically in representation theory, a semisimple representation (also called a completely reducible representation) is a linear representation of a group or an algebra that is a direct sum of simple representations (also called irreducible representations). It is an example of the general mathematical notion of semisimplicity. Many representations that appear in applications of representation theory are semisimple or can be approximated by semisimple representations.
Variété (géométrie)En mathématiques, et plus particulièrement en géométrie, la notion de variété peut être appréhendée intuitivement comme la généralisation de la classification qui établit qu'une courbe est une variété de dimension 1 et une surface est une variété de dimension 2. Une variété de dimension n, où n désigne un entier naturel, est un espace topologique localement euclidien, c'est-à-dire dans lequel tout point appartient à une région qui s'apparente à un tel espace.
Variété différentielleEn mathématiques, les variétés différentielles ou variétés différentiables sont les objets de base de la topologie différentielle et de la géométrie différentielle. Il s'agit de variétés, « espaces courbes » localement modelés sur l'espace euclidien de dimension n, sur lesquelles il est possible de généraliser une bonne part des opérations du calcul différentiel et intégral. Une variété différentielle se définit donc d'abord par la donnée d'une variété topologique, espace topologique localement homéomorphe à l'espace R.
Espace de KolmogorovEn topologie et dans d'autres branches des mathématiques, un espace de Kolmogorov (ou espace T0) est un espace topologique dans lequel tous les points peuvent être « distingués du point de vue topologique ». De tous les axiomes de séparation qui peuvent être demandés à un espace topologique, cette condition est la plus faible. Les espaces de Kolmogorov doivent leur nom au mathématicien russe Andreï Kolmogorov. Un espace topologique X est dit de Kolmogorov si pour tout couple d'éléments distincts x et y de X, il existe un voisinage de x qui ne contient pas y ou un voisinage de y qui ne contient pas x.
Sphère de RiemannEn mathématiques, la sphère de Riemann est une manière de prolonger le plan des nombres complexes avec un point additionnel à l'infini, de manière que certaines expressions mathématiques deviennent convergentes et élégantes, du moins dans certains contextes. Déjà envisagée par le mathématicien Carl Friedrich Gauss, elle est baptisée du nom de son élève Bernhard Riemann. Ce plan s'appelle également la droite projective complexe, dénoté .
Groupes d'homotopie des sphèresEn mathématiques, et plus spécifiquement en topologie algébrique, les groupes d'homotopie des sphères sont des invariants qui décrivent, en termes algébriques, comment des sphères de dimensions et égales ou différentes peuvent s'enrouler l'une sur l'autre. La notion, définie au départ pour des sphères de dimension 1 (cercles) et de dimension 2, se généralise à des sphères de toutes dimensions (les -sphères).
Représentation induite d'un groupe finiEn mathématiques une représentation induite est une représentation d'un groupe canoniquement associée à une représentation de l'un de ses sous-groupes. L'induction est adjointe à gauche de la . Cette propriété intervient dans la formule de réciprocité de Frobenius. Cet article traite le cas des groupes finis. Dans tout l'article, G désigne un groupe fini, H un sous-groupe de G et θ une représentation de H dans un espace vectoriel de dimension finie W sur un corps K. G/H désigne l'ensemble des classes à gauche modulo H.
Variété kählérienneEn mathématiques, une variété kählérienne ou variété de Kähler est une variété différentielle équipée d'une structure unitaire satisfaisant une condition d'intégrabilité. C'est en particulier une variété riemannienne, une variété symplectique et une variété complexe, ces trois structures étant mutuellement compatibles. Les variétés kählériennes sont un objet d'étude naturel en géométrie différentielle complexe. Elles doivent leur nom au mathématicien Erich Kähler. Plusieurs définitions équivalentes existent.
Carré sommableEn mathématiques, une fonction définie sur un espace mesuré Ω et à valeurs dans R ou C est dite de carré sommable ou de carré intégrable si elle appartient à l’espace L(Ω) des fonctions dont l'intégrale du carré (du module dans le cas des nombres complexes) converge sur Ω. Par exemple, une fonction mesurable de R dans C est de carré sommable lorsque l’intégrale suivante (au sens de Lebesgue) converge, c'est-à-dire si elle existe et correspond ainsi à un nombre fini.
Sphère d'homologieEn topologie algébrique, une sphère d'homologie (ou encore, sphère d'homologie entière) est une variété X de dimension n ≥ 1 qui a les mêmes groupes d'homologie que la n-sphère standard S, à savoir : H0(X,Z) = Z = Hn(X,Z) et Hi(X,Z) = {0} pour tout autre entier i. Une telle variété X est donc connexe, fermée (i.e. compacte et sans bord), orientable, et avec (à part b0 = 1) un seul nombre de Betti non nul : bn. Les sphères d'homologie rationnelle sont définies de façon analogue, avec l'homologie à coefficients rationnels.