Éthylène-acétate de vinyleL'éthylène-acétate de vinyle ou EVA () est issu de la copolymérisation de l'éthylène avec l'acétate de vinyle. Il a été commercialisé en 1950 par ICI. Les copolymères EVA contiennent environ 20 % en masse de comonomère acétate de vinyle. Leurs propriétés adhésives sont en étroite relation avec la polarité de ce dernier. Cette résine présente un caractère plus élastomère que le polyéthylène. En effet, l'introduction du motif acétate diminue la cristallinité, donc la rigidité.
Variété différentielleEn mathématiques, les variétés différentielles ou variétés différentiables sont les objets de base de la topologie différentielle et de la géométrie différentielle. Il s'agit de variétés, « espaces courbes » localement modelés sur l'espace euclidien de dimension n, sur lesquelles il est possible de généraliser une bonne part des opérations du calcul différentiel et intégral. Une variété différentielle se définit donc d'abord par la donnée d'une variété topologique, espace topologique localement homéomorphe à l'espace R.
Matrix ringIn abstract algebra, a matrix ring is a set of matrices with entries in a ring R that form a ring under matrix addition and matrix multiplication . The set of all n × n matrices with entries in R is a matrix ring denoted Mn(R) (alternative notations: Matn(R) and Rn×n). Some sets of infinite matrices form infinite matrix rings. Any subring of a matrix ring is a matrix ring. Over a rng, one can form matrix rngs. When R is a commutative ring, the matrix ring Mn(R) is an associative algebra over R, and may be called a matrix algebra.
Matrix decompositionIn the mathematical discipline of linear algebra, a matrix decomposition or matrix factorization is a factorization of a matrix into a product of matrices. There are many different matrix decompositions; each finds use among a particular class of problems. In numerical analysis, different decompositions are used to implement efficient matrix algorithms. For instance, when solving a system of linear equations , the matrix A can be decomposed via the LU decomposition.
Essai de compressionUn essai de compression mesure la résistance à la compression d'un matériau sur une machine d'essais mécaniques suivant un protocole normalisé. Les essais de compression se font souvent sur le même appareil que l'essai de traction mais en appliquant la charge en compression au lieu de l'appliquer en traction. Pendant l'essai de compression, l'échantillon se raccourcit et s'élargit. La déformation relative est « négative » en ce sens que la longueur de l'échantillon diminue.
Fibre de verreLa fibre de verre est un filament de verre. Par extension, les plastiques à renfort de verre sont aussi appelés fibre de verre. Les fibres de verre, constituent avec les verres creux, les verres plats et les verres cellulaires, les principales familles de verre. La fibre de verre a été brevetée en 1930. Ce n'est toutefois que récemment qu'elle a révolutionné l'industrie verrière, utilisée pour ses qualités mécaniques et optiques.
Jet (mathématiques)En mathématiques, un jet est une opération qui, en chaque point de son domaine, associe à une fonction différentiable f un polynôme : la série de Taylor de f tronquée. Bien que ceci soit la définition d'un jet, la théorie des jets considère ces polynômes comme des polynômes formels plutôt que des fonctions polynomiales. Cet article explore d'abord la notion de jet d'une fonction d'une variable réelle à valeur réelle, suivie d'une discussion de la généralisation à plusieurs variables.
Gauge theory (mathematics)In mathematics, and especially differential geometry and mathematical physics, gauge theory is the general study of connections on vector bundles, principal bundles, and fibre bundles. Gauge theory in mathematics should not be confused with the closely related concept of a gauge theory in physics, which is a field theory which admits gauge symmetry. In mathematics theory means a mathematical theory, encapsulating the general study of a collection of concepts or phenomena, whereas in the physical sense a gauge theory is a mathematical model of some natural phenomenon.
Matrice de rotationEn mathématiques, et plus précisément en algèbre linéaire, une matrice de rotation Q est une matrice orthogonale de déterminant 1, ce qui peut s'exprimer par les équations suivantes : QtQ = I = QQt et det Q = 1, où Qt est la matrice transposée de Q, et I est la matrice identité. Ces matrices sont exactement celles qui, dans un espace euclidien, représentent les isométries (vectorielles) directes.
Géométrie différentiellevignette|Exemple d'objets étudiés en géométrie différentielle. Un triangle dans une surface de type selle de cheval (un paraboloïde hyperbolique), ainsi que deux droites parallèles. En mathématiques, la géométrie différentielle est l'application des outils du calcul différentiel à l'étude de la géométrie. Les objets d'étude de base sont les variétés différentielles, ensembles ayant une régularité suffisante pour envisager la notion de dérivation, et les fonctions définies sur ces variétés.