Série de Taylorthumb|Brook Taylor, dont la série porte le nom. En mathématiques, et plus précisément en analyse, la série de Taylor au point d'une fonction (réelle ou complexe) indéfiniment dérivable en ce point, appelée aussi le développement en série de Taylor de en , est une série entière approchant la fonction autour de , construite à partir de et de ses dérivées successives en . Elles portent le nom de Brook Taylor, qui les a introduites en 1715.
Développement limitéEn physique et en mathématiques, un développement limité (noté DL) d'une fonction en un point est une approximation polynomiale de cette fonction au voisinage de ce point, c'est-à-dire l'écriture de cette fonction sous la forme de la somme : d'une fonction polynomiale ; d'un reste négligeable au voisinage du point considéré. En physique, il est fréquent de confondre la fonction avec son développement limité, à condition que l'erreur (c’est-à-dire le reste) ainsi faite soit inférieure à l'erreur autorisée.
Développement asymptotiqueEn mathématiques, un développement asymptotique d'une fonction f donnée dans un voisinage fixé est une somme finie de fonctions de référence qui donne une bonne approximation du comportement de la fonction f dans le voisinage considéré. Le concept de développement asymptotique a été introduit par Poincaré à propos de l'étude du problème à N corps de la mécanique céleste par la théorie des perturbations. La somme étant finie, la question de la convergence ne se pose pas.
Série de LaurentCet article traite du développement en série de Laurent en analyse complexe. Pour la définition et les propriétés des séries de Laurent formelles en algèbre, veuillez consulter l'article Série formelle. En analyse complexe, la série de Laurent (aussi appelée développement de Laurent) d'une fonction holomorphe f est une manière de représenter f au voisinage d'une singularité, ou plus généralement, autour d'un « trou » de son domaine de définition. On représente f comme somme d'une série de puissances (d'exposants positifs ou négatifs) de la variable complexe.
Série entièreEn mathématiques et particulièrement en analyse, une série entière est une série de fonctions de la forme où les coefficients a forment une suite réelle ou complexe. Une explication de ce terme est qu'. Les séries entières possèdent des propriétés de convergence remarquables, qui s'expriment pour la plupart à l'aide de son rayon de convergence R, grandeur associée à la série. Sur le disque de convergence (disque ouvert de centre 0 et de rayon R), la fonction somme de la série peut être dérivée indéfiniment terme à terme.
Critère d'information d'AkaikeLe critère d'information d'Akaike, (en anglais Akaike information criterion ou AIC) est une mesure de la qualité d'un modèle statistique proposée par Hirotugu Akaike en 1973. Lorsque l'on estime un modèle statistique, il est possible d'augmenter la vraisemblance du modèle en ajoutant un paramètre. Le critère d'information d'Akaike, tout comme le critère d'information bayésien, permet de pénaliser les modèles en fonction du nombre de paramètres afin de satisfaire le critère de parcimonie.
Relative likelihoodIn statistics, when selecting a statistical model for given data, the relative likelihood compares the relative plausibilities of different candidate models or of different values of a parameter of a single model. Assume that we are given some data x for which we have a statistical model with parameter θ. Suppose that the maximum likelihood estimate for θ is . Relative plausibilities of other θ values may be found by comparing the likelihoods of those other values with the likelihood of .
Critère d'information bayésienLe critère d'information bayésien (en anglais bayesian information criterion, en abrégé BIC), aussi appelé critère d'information de Schwarz, est un critère d'information dérivé du critère d'information d'Akaike proposé par en 1978. À la différence du critère d'information d'Akaike, la pénalité dépend de la taille de l'échantillon et pas seulement du nombre de paramètres. Il s'écrit : avec la vraisemblance du modèle estimée, le nombre d'observations dans l'échantillon et le nombre de paramètres libres du modèle.
Maximum de vraisemblanceEn statistique, l'estimateur du maximum de vraisemblance est un estimateur statistique utilisé pour inférer les paramètres de la loi de probabilité d'un échantillon donné en recherchant les valeurs des paramètres maximisant la fonction de vraisemblance. Cette méthode a été développée par le statisticien Ronald Aylmer Fisher en 1922. Soient neuf tirages aléatoires x1, ..., x9 suivant une même loi ; les valeurs tirées sont représentées sur les diagrammes ci-dessous par des traits verticaux pointillés.
Deviance information criterionThe deviance information criterion (DIC) is a hierarchical modeling generalization of the Akaike information criterion (AIC). It is particularly useful in Bayesian model selection problems where the posterior distributions of the models have been obtained by Markov chain Monte Carlo (MCMC) simulation. DIC is an asymptotic approximation as the sample size becomes large, like AIC. It is only valid when the posterior distribution is approximately multivariate normal.