Cryptographically secure pseudorandom number generatorA cryptographically secure pseudorandom number generator (CSPRNG) or cryptographic pseudorandom number generator (CPRNG) is a pseudorandom number generator (PRNG) with properties that make it suitable for use in cryptography. It is also loosely known as a cryptographic random number generator (CRNG). Most cryptographic applications require random numbers, for example: key generation nonces salts in certain signature schemes, including ECDSA, RSASSA-PSS The "quality" of the randomness required for these applications varies.
Groupe compactEn mathématiques, et plus particulièrement en analyse harmonique abstraite, un groupe compact est un groupe topologique dont l'espace topologique sous-jacent est compact. Les groupes compacts sont des groupes unimodulaires, dont la compacité simplifie l'étude. Ces groupes comprennent notamment les groupes finis et les groupes de Lie compacts. Tout groupe compact est limite projective de groupes de Lie compacts. Tout groupe discret fini est un groupe compact. En effet, tout espace discret fini est compact.
Règle de résolutionEn logique mathématique, la règle de résolution ou principe de résolution de Robinson est une règle d'inférence logique qui généralise le modus ponens. Cette règle est principalement utilisée dans les systèmes de preuve automatiques, elle est à la base du langage de programmation logique Prolog. La règle du modus ponens s'écrit et se lit : de p et de "p implique q", je déduis q. On peut réécrire l'implication "p implique q" comme "p est faux ou q est vraie". Ainsi, la règle du modus ponens s'écrit .
Démonstration (logique et mathématiques)vignette| : un des plus vieux fragments des Éléments d'Euclide qui montre une démonstration mathématique. En mathématiques et en logique, une démonstration est un ensemble structuré d'étapes correctes de raisonnement. Dans une démonstration, chaque étape est soit un axiome (un fait acquis), soit l'application d'une règle qui permet d'affirmer qu'une proposition, la conclusion, est une conséquence logique d'une ou plusieurs autres propositions, les prémisses de la règle.
Méthode des éléments finisEn analyse numérique, la méthode des éléments finis (MEF, ou FEM pour finite element method en anglais) est utilisée pour résoudre numériquement des équations aux dérivées partielles. Celles-ci peuvent par exemple représenter analytiquement le comportement dynamique de certains systèmes physiques (mécaniques, thermodynamiques, acoustiques).
Théorème des facteurs invariantsEn mathématiques, le théorème des facteurs invariants porte sur les modules de type fini sur les anneaux principaux. Les facteurs invariants non inversibles sont des obstructions à l'inversibilité des matrices qui n'apparaissent pas dans la théorie des espaces vectoriels. Leur calcul a de nombreuses applications : par exemple trouver la classe d'isomorphie d'un groupe abélien de type fini à partir d'une présentation de celui-ci. Dans un cadre précis, le théorème des facteurs invariants se particularise en théorèmes de réduction d'endomorphisme.
Théorème de compacitévignette|420x420px|Si toute partie finie d'une théorie est satisfaisable (schématisée à gauche), alors la théorie est satisfaisable (schématisée à droite). En logique mathématique, un théorème de compacité énonce que si toute partie finie d'une théorie est satisfaisable alors la théorie elle-même est satisfaisable. Il existe des logiques où il y a un théorème de compacité comme le calcul propositionnel ou la logique du premier ordre (on parle de logiques compactes). Il existe aussi des logiques sans théorème de compacité.
Finitely generated moduleIn mathematics, a finitely generated module is a module that has a finite generating set. A finitely generated module over a ring R may also be called a finite R-module, finite over R, or a module of finite type. Related concepts include finitely cogenerated modules, finitely presented modules, finitely related modules and coherent modules all of which are defined below. Over a Noetherian ring the concepts of finitely generated, finitely presented and coherent modules coincide.
Méthode des différences finiesEn analyse numérique, la méthode des différences finies est une technique courante de recherche de solutions approchées d'équations aux dérivées partielles qui consiste à résoudre un système de relations (schéma numérique) liant les valeurs des fonctions inconnues en certains points suffisamment proches les uns des autres. Cette méthode apparaît comme étant la plus simple à mettre en œuvre car elle procède en deux étapes : d'une part la discrétisation par différences finies des opérateurs de dérivation/différentiation, d'autre part la convergence du schéma numérique ainsi obtenu lorsque la distance entre les points diminue.
Écriture bicaméraleUne écriture bicamérale est une écriture comprenant des lettres minuscules et des lettres capitales. Plus précisément, elle oppose deux œils de format (ou « casse ») — et parfois de tracé — différents pour chaque caractère. Par opposition, une écriture dans laquelle il n’existe pas une telle opposition est dite monocamérale ou unicamérale. On appelle les lettres des minuscules, tandis que les lettres d’un format plus grand, utilisées dans certains cas régis par la grammaire et l’orthotypographie, sont les majuscules (à ne pas confondre avec capitales).