In the mathematical field of graph theory, the Petersen graph is an undirected graph with 10 vertices and 15 edges. It is a small graph that serves as a useful example and counterexample for many problems in graph theory. The Petersen graph is named after Julius Petersen, who in 1898 constructed it to be the smallest bridgeless cubic graph with no three-edge-coloring.
Although the graph is generally credited to Petersen, it had in fact first appeared 12 years earlier, in a paper by . Kempe observed that its vertices can represent the ten lines of the Desargues configuration, and its edges represent pairs of lines that do not meet at one of the ten points of the configuration.
Donald Knuth states that the Petersen graph is "a remarkable configuration that serves as a counterexample to many optimistic predictions about what might be true for graphs in general."
The Petersen graph also makes an appearance in tropical geometry. The cone over the Petersen graph is naturally identified with the moduli space of five-pointed rational tropical curves.
The Petersen graph is the complement of the line graph of . It is also the Kneser graph ; this means that it has one vertex for each 2-element subset of a 5-element set, and two vertices are connected by an edge if and only if the corresponding 2-element subsets are disjoint from each other. As a Kneser graph of the form it is an example of an odd graph.
Geometrically, the Petersen graph is the graph formed by the vertices and edges of the hemi-dodecahedron, that is, a dodecahedron with opposite points, lines and faces identified together.
The Petersen graph is nonplanar. Any nonplanar graph has as minors either the complete graph , or the complete bipartite graph , but the Petersen graph has both as minors. The minor can be formed by contracting the edges of a perfect matching, for instance the five short edges in the first picture. The minor can be formed by deleting one vertex (for instance the central vertex of the 3-symmetric drawing) and contracting an edge incident to each neighbor of the deleted vertex.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels traditionally called "colors" to elements of a graph subject to certain constraints. In its simplest form, it is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. Similarly, an edge coloring assigns a color to each edge so that no two adjacent edges are of the same color, and a face coloring of a planar graph assigns a color to each face or region so that no two faces that share a boundary have the same color.
In graph theory, a proper edge coloring of a graph is an assignment of "colors" to the edges of the graph so that no two incident edges have the same color. For example, the figure to the right shows an edge coloring of a graph by the colors red, blue, and green. Edge colorings are one of several different types of graph coloring. The edge-coloring problem asks whether it is possible to color the edges of a given graph using at most k different colors, for a given value of k, or with the fewest possible colors.
Study of structures and concepts that do not require the notion of continuity. Graph theory, or study of general countable sets are some of the areas that are covered by discrete mathematics. Emphasis
This course covers the statistical physics approach to computer science problems ranging from graph theory and constraint satisfaction to inference and machine learning. In particular the replica and
Analyzes a macroeconomic model focusing on labor income share and the effects of productivity shocks on GDP, consumption, investment, and stock prices.
We prove the non-planarity of a family of 3-regular graphs constructed from the solutions to the Markoff equation x2 + y2 + z2 = xyz modulo prime numbers greater than 7. The proof uses Euler characteristic and an enumeration of the short cycles in these gr ...
Orthogonal group synchronization is the problem of estimating n elements Z(1),& mldr;,Z(n) from the rxr orthogonal group given some relative measurements R-ij approximate to Z(i)Z(j)(-1). The least-squares formulation is nonconvex. To avoid its local minim ...
In this paper, we propose a novel approach that employs kinetic equations to describe the collective dynamics emerging from graph-mediated pairwise interactions in multi-agent systems. We formally show that for large graphs and specific classes of interact ...