In electronics, emitter-coupled logic (ECL) is a high-speed integrated circuit bipolar transistor logic family. ECL uses an overdriven bipolar junction transistor (BJT) differential amplifier with single-ended input and limited emitter current to avoid the saturated (fully on) region of operation and its slow turn-off behavior.
As the current is steered between two legs of an emitter-coupled pair, ECL is sometimes called current-steering logic (CSL),
current-mode logic (CML)
or current-switch emitter-follower (CSEF) logic.
In ECL, the transistors are never in saturation, the input and output voltages have a small swing (0.8 V), the input impedance is high and the output impedance is low. As a result, the transistors change states quickly, gate delays are low, and the fanout capability is high. In addition, the essentially constant current draw of the differential amplifiers minimises delays and glitches due to supply-line inductance and capacitance, and the complementary outputs decrease the propagation time of the whole circuit by reducing inverter count.
ECL's major disadvantage is that each gate continuously draws current, which means that it requires (and dissipates) significantly more power than those of other logic families, especially when quiescent.
The equivalent of emitter-coupled logic made from FETs is called source-coupled logic (SCFL).
A variation of ECL in which all signal paths and gate inputs are differential is known as differential current switch (DCS) logic.
ECL was invented in August 1956 at IBM by Hannon S. Yourke. Originally called current-steering logic, it was used in the Stretch, IBM 7090, and IBM 7094 computers. The logic was also called a current-mode circuit. It was also used to make the ASLT circuits in the IBM 360/91.
Yourke's current switch was a differential amplifier whose input logic levels were different from the output logic levels. "In current mode operation, however, the output signal consists of voltage levels which vary about a reference level different from the input reference level.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours couvre les fondements des systèmes numériques. Sur la base d'algèbre Booléenne et de circuitscombinatoires et séquentiels incluant les machines d'états finis, les methodes d'analyse et de syn
This course provides the trends in nanoelectronics for scaling, better performances and lower energy per function. It covers fundamental phenomena of nanoscale devices, beyond CMOS steep slope switche
In computer engineering, a logic family is one of two related concepts: A logic family of monolithic digital integrated circuit devices is a group of electronic logic gates constructed using one of several different designs, usually with compatible logic levels and power supply characteristics within a family. Many logic families were produced as individual components, each containing one or a few related basic logical functions, which could be used as "building-blocks" to create systems or as so-called "glue" to interconnect more complex integrated circuits.
A current source is an electronic circuit that delivers or absorbs an electric current which is independent of the voltage across it. A current source is the dual of a voltage source. The term current sink is sometimes used for sources fed from a negative voltage supply. Figure 1 shows the schematic symbol for an ideal current source driving a resistive load. There are two types. An independent current source (or sink) delivers a constant current. A dependent current source delivers a current which is proportional to some other voltage or current in the circuit.
The field-effect transistor (FET) is a type of transistor that uses an electric field to control the flow of current in a semiconductor. FETs (JFETs or MOSFETs) are devices with three terminals: source, gate, and drain. FETs control the flow of current by the application of a voltage to the gate, which in turn alters the conductivity between the drain and source. FETs are also known as unipolar transistors since they involve single-carrier-type operation.
This paper presents an output capacitor-less low-dropout regulator (LDO) with a bias switching scheme for biomedical applications with dual-range load currents. Power optimization is crucial for systems with multiple activation modes such as neural interfa ...
This paper presents a new power-efficient and high-speed voltage level shifter. In the proposed structure, the existing contentions at the internal nodes are reduced using auxiliary transistors and feedback networks, leading to a significant reduction in t ...
There is a never-ending push for electronic systems to provide faster operation speeds, higher energy efficiencies, and higher power capabilities at smaller scales. These requirements are apparent in different areas of electronics, from radiofrequency (RF) ...