Summary
In robotics, an end effector is the device at the end of a robotic arm, designed to interact with the environment. The exact nature of this device depends on the application of the robot. In the strict definition, which originates from serial robotic manipulators, the end effector means the last link (or end) of the robot. At this endpoint, the tools are attached. In a wider sense, an end effector can be seen as the part of a robot that interacts with the work environment. This does not refer to the wheels of a mobile robot or the feet of a humanoid robot, which are not end effectors but rather part of a robot's mobility. End effectors may consist of a gripper or a tool. When referring to robotic prehension there are four general categories of robot grippers: Impactive: jaws or claws which physically grasp by direct impact upon the object. Ingressive: pins, needles or hackles which physically penetrate the surface of the object (used in textile, carbon, and glass fiber handling). Astrictive: attractive forces applied to the object's surface (whether by vacuum, magneto-, or electroadhesion). Contigutive: requiring direct contact for adhesion to take place (such as glue, surface tension, or freezing). These categories describe the physical effects used to achieve a stable grasp between a gripper and the object to be grasped. Industrial grippers may employ mechanical, suction, or magnetic means. Vacuum cups and electromagnets dominate the automotive field and metal sheet handling. Bernoulli grippers exploit the airflow between the gripper and the part, in which a lifting force brings the gripper and part close each other (using Bernoulli's principle). Bernoulli grippers are a type of contactless grippers; the object remains confined in the force field generated by the gripper without coming into direct contact with it. Bernoulli grippers have been adopted in photovoltaic cell handling, silicon wafer handling, and in the textile and leather industries.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.