Summary
In mathematical analysis, the maximum and minimum of a function are, respectively, the largest and smallest value taken by the function. Known generically as extremum, they may be defined either within a given range (the local or relative extrema) or on the entire domain (the global or absolute extrema) of a function. Pierre de Fermat was one of the first mathematicians to propose a general technique, adequality, for finding the maxima and minima of functions. As defined in set theory, the maximum and minimum of a set are the greatest and least elements in the set, respectively. Unbounded infinite sets, such as the set of real numbers, have no minimum or maximum. In statistics, the corresponding concept is the sample maximum and minimum. A real-valued function f defined on a domain X has a global (or absolute) maximum point at x∗, if f(x∗) ≥ f(x) for all x in X. Similarly, the function has a global (or absolute) minimum point at x∗, if f(x∗) ≤ f(x) for all x in X. The value of the function at a maximum point is called the of the function, denoted , and the value of the function at a minimum point is called the of the function. Symbolically, this can be written as follows: is a global maximum point of function if The definition of global minimum point also proceeds similarly. If the domain X is a metric space, then f is said to have a local (or relative) maximum point at the point x∗, if there exists some ε > 0 such that f(x∗) ≥ f(x) for all x in X within distance ε of x∗. Similarly, the function has a local minimum point at x∗, if f(x∗) ≤ f(x) for all x in X within distance ε of x∗. A similar definition can be used when X is a topological space, since the definition just given can be rephrased in terms of neighbourhoods. Mathematically, the given definition is written as follows: Let be a metric space and function . Then is a local maximum point of function if such that The definition of local minimum point can also proceed similarly. In both the global and local cases, the concept of a can be defined.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.