Summary
Soft robotics is a subfield of robotics that concerns the design, control, and fabrication of robots composed of compliant materials, instead of rigid links. In contrast to rigid-bodied robots built from metals, ceramics and hard plastics, the compliance of soft robots can improve their safety when working in close contact with humans. The goal of soft robotics is the design and construction of robots with physically flexible bodies and electronics. Sometimes softness is limited to part of the machine. For example, rigid-bodied robotic arms can employ soft end effectors to gently grab and manipulate delicate or irregularly shaped objects. Most rigid-bodied mobile robots also strategically employ soft components, such as foot pads to absorb shock or springy joints to store/release elastic energy. However, the field of soft robotics generally leans toward machines that are predominately or entirely soft. Robots with entirely soft bodies have tremendous potential. For one their flexibility allows them to squeeze into places rigid bodies cannot, which could prove useful in disaster relief scenarios. Soft robots are also safer for human interaction and for internal deployment inside a human body. Nature is often a source of inspiration for soft robot design given that animals themselves are mostly composed of soft components and they appear to exploit their softness for efficient movement in complex environments almost everywhere on Earth. Thus, soft robots are often designed to look like familiar creatures, especially entirely soft organisms like octopuses. However, it is extremely difficult to manually design and control soft robots given their low mechanical impedance. The very thing that makes soft robots beneficial—their flexibility and compliance—makes them difficult to control. The mathematics developed over the past centuries for designing rigid bodies generally fail to extend to soft robots.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.