Summary
A diode is a two-terminal electronic component that conducts current primarily in one direction (asymmetric conductance). It has low (ideally zero) resistance in one direction, and high (ideally infinite) resistance in the other. A semiconductor diode, the most commonly used type today, is a crystalline piece of semiconductor material with a p–n junction connected to two electrical terminals. It has an exponential current–voltage characteristic. Semiconductor diodes were the first semiconductor electronic devices. The discovery of asymmetric electrical conduction across the contact between a crystalline mineral and a metal was made by German physicist Ferdinand Braun in 1874. Today, most diodes are made of silicon, but other semiconducting materials such as gallium arsenide and germanium are also used. The obsolete thermionic diode is a vacuum tube with two electrodes, a heated cathode and a plate, in which electrons can flow in only one direction, from cathode to plate. Among many uses, diodes are found in rectifiers to convert alternating current (AC) power to direct current (DC), demodulation in radio receivers, and can even be used for logic or as temperature sensors. A common variant of a diode is a light-emitting diode, which is used as electric lighting and status indicators on electronic devices. The most common function of a diode is to allow an electric current to pass in one direction (called the diode's forward direction), while blocking it in the opposite direction (the reverse direction). As such, the diode can be viewed as an electronic version of a check valve. This unidirectional behavior is called rectification and is used to convert alternating current (AC) to direct current (DC). As rectifiers, diodes can be used for such tasks as extracting modulation from radio signals in radio receivers. However, diodes can have more complicated behavior than this simple on–off action, because of their nonlinear current–voltage characteristics.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (28)
EE-202(b): Electronics I
Découvrir le monde de l'électronique depuis les lois fondamentales des composants discrets linéaires et non linéaires. Les circuits obtenus avec des assemblages de composants nécessitent de nombreuses
MSE-371: Practice of finite elements
Le but de ce cours est d'apprendre à réaliser de manière rigoureuse et critique des analyses par éléments finis de problèmes concrets en mécanique des solides à l'aide d'un logiciel CAE moderne.
EE-333: Micro and nanoelectronic devices
Ce cours est une introduction aux principes physiques des composants à semiconducteurs (transistors bipolaires, MOSFET et autres) et à leur modèlisation. Les performances électriques (digitales et ana
Show more
Related MOOCs (1)
Signs and LED displays
Comprendre le fonctionnement des enseignes et des afficheurs à LED, depuis les petites enseignes à motifs fixes jusqu'aux écrans géants à LED. Apprendre à les fabriquer et à les programmer les microc