The representation theory of groups is a part of mathematics which examines how groups act on given structures.
Here the focus is in particular on operations of groups on vector spaces. Nevertheless, groups acting on other groups or on sets are also considered. For more details, please refer to the section on permutation representations.
Other than a few marked exceptions, only finite groups will be considered in this article. We will also restrict ourselves to vector spaces over fields of characteristic zero. Because the theory of algebraically closed fields of characteristic zero is complete, a theory valid for a special algebraically closed field of characteristic zero is also valid for every other algebraically closed field of characteristic zero. Thus, without loss of generality, we can study vector spaces over
Representation theory is used in many parts of mathematics, as well as in quantum chemistry and physics. Among other things it is used in algebra to examine the structure of groups. There are also applications in harmonic analysis and number theory. For example, representation theory is used in the modern approach to gain new results about automorphic forms.
Let be a –vector space and a finite group. A linear representation of is a group homomorphism Here is notation for a general linear group, and for an automorphism group. This means that a linear representation is a map which satisfies for all The vector space is called representation space of Often the term representation of is also used for the representation space
The representation of a group in a module instead of a vector space is also called a linear representation.
We write for the representation of Sometimes we use the notation if it is clear to which representation the space belongs.
In this article we will restrict ourselves to the study of finite-dimensional representation spaces, except for the last chapter. As in most cases only a finite number of vectors in is of interest, it is sufficient to study the subrepresentation generated by these vectors.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, especially in the fields of group theory and representation theory of groups, a class function is a function on a group G that is constant on the conjugacy classes of G. In other words, it is invariant under the conjugation map on G. Such functions play a basic role in representation theory. The character of a linear representation of G over a field K is always a class function with values in K. The class functions form the center of the group ring K[G]. Here a class function f is identified with the element .
In mathematics, a Young tableau (tæˈbloʊ,_ˈtæbloʊ; plural: tableaux) is a combinatorial object useful in representation theory and Schubert calculus. It provides a convenient way to describe the group representations of the symmetric and general linear groups and to study their properties. Young tableaux were introduced by Alfred Young, a mathematician at Cambridge University, in 1900. They were then applied to the study of the symmetric group by Georg Frobenius in 1903.
In mathematics, Schur's lemma is an elementary but extremely useful statement in representation theory of groups and algebras. In the group case it says that if M and N are two finite-dimensional irreducible representations of a group G and φ is a linear map from M to N that commutes with the action of the group, then either φ is invertible, or φ = 0. An important special case occurs when M = N, i.e. φ is a self-map; in particular, any element of the center of a group must act as a scalar operator (a scalar multiple of the identity) on M.
This course provides a rigorous introduction to the ideas, methods and results of classical statistical mechanics, with an emphasis on presenting the central tools for the probabilistic description of
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions.
Let G be a simple linear algebraic group defined over an algebraically closed field of characteristic p ≥ 0 and let φ be a nontrivial p-restricted irreducible representation of G. Let T be a maximal torus of G and s ∈ T . We say that s is Ad-regular if α(s ...
2023
, ,
Omnidirectional video streaming is usually implemented based on the representations of tiles, where the tiles are obtained by splitting the video frame into several rectangular areas and each tile is converted into multiple representations with different r ...
Let K be an algebraically closed field of characteristic zero, and let G be a connected reductive algebraic group over K. We address the problem of classifying triples (G, H, V ), where H is a proper connected subgroup of G, and V is a finitedimensional ir ...