Nombre réelEn mathématiques, un nombre réel est un nombre qui peut être représenté par une partie entière et une liste finie ou infinie de décimales. Cette définition s'applique donc aux nombres rationnels, dont les décimales se répètent de façon périodique à partir d'un certain rang, mais aussi à d'autres nombres dits irrationnels, tels que la racine carrée de 2, π et e.
Résidu (analyse complexe)En analyse complexe, le résidu est un nombre complexe qui décrit le comportement de l'intégrale curviligne d'une fonction holomorphe aux alentours d'une singularité. Les résidus se calculent assez facilement et, une fois connus, permettent de calculer des intégrales curvilignes plus compliquées grâce au théorème des résidus. Le terme résidu vient de Cauchy dans ses Exercices de mathématiques publié en 1826. Soit un ouvert de , un ensemble dans D de points isolés et une fonction holomorphe.
FactorielleEn mathématiques, la factorielle d'un entier naturel n est le produit des nombres entiers strictement positifs inférieurs ou égaux à n. Cette opération est notée avec un point d'exclamation, n!, ce qui se lit soit « factorielle de n », soit « factorielle n », soit « n factorielle ». Cette notation a été introduite en 1808 par Christian Kramp. Par exemple, la factorielle 10 exprime le nombre de combinaisons possibles de placement des 10 convives autour d'une table (on dit la permutation des convives).
Pôle (mathématiques)thumb|Représentation de la fonction avec deux pôles d'ordre 1, en z = et z = -. En analyse complexe, un pôle d'une fonction holomorphe est un certain type de singularité isolée qui se comporte comme la singularité en z = 0 de la fonction , où n est un entier naturel non nul. Une fonction holomorphe n'ayant que des singularités isolées qui sont des pôles est appelée une fonction méromorphe. Soient U un ouvert du plan complexe C, a un élément de U et une fonction holomorphe.
Série de LaurentCet article traite du développement en série de Laurent en analyse complexe. Pour la définition et les propriétés des séries de Laurent formelles en algèbre, veuillez consulter l'article Série formelle. En analyse complexe, la série de Laurent (aussi appelée développement de Laurent) d'une fonction holomorphe f est une manière de représenter f au voisinage d'une singularité, ou plus généralement, autour d'un « trou » de son domaine de définition. On représente f comme somme d'une série de puissances (d'exposants positifs ou négatifs) de la variable complexe.
Formule d'EulerLa formule d'Euler est une égalité mathématique, attribuée au mathématicien suisse Leonhard Euler. Elle s'écrit, pour tout nombre réel x, et se généralise aux x complexes. Ici, le nombre e est la base des logarithmes naturels, i est l'unité imaginaire, sin et cos sont des fonctions trigonométriques. Cette formule peut être interprétée en disant que la fonction x ↦ e, appelée fonction cis, décrit le cercle unité dans le plan complexe lorsque x varie dans l'ensemble des nombres réels.
Fonction spécialeL'analyse mathématique regroupe sous le terme de fonctions spéciales un ensemble de fonctions analytiques non élémentaires, qui sont apparues au comme solutions d'équations de la physique mathématique, particulièrement les équations aux dérivées partielles d'ordre deux et quatre. Comme leurs propriétés ont été étudiées extensivement (et continuent de l'être), on dispose à leur sujet d'une multitude d'informations.
Logarithme complexeEn mathématiques, le logarithme complexe est une fonction généralisant la fonction logarithme naturel (définie sur ]0,+∞[) au domaine C* des nombres complexes non nuls. Plusieurs définitions sont possibles. Aucune ne permet de conserver, à la fois, l'univocité, la continuité et les propriétés algébriques de la fonction logarithme. Histoire des nombres complexes La question de savoir s'il est possible de prolonger le logarithme naturel (c'est-à-dire de le définir sur un ensemble plus grand que ]0,+∞[) s'est posée dès la seconde moitié du avec les développements en série des fonctions.
Série (mathématiques)En mathématiques, la notion de série permet de généraliser la notion de somme finie. Étant donné une suite de terme général u, étudier la série de terme général u c'est étudier la suite obtenue en prenant la somme des premiers termes de la suite (u), autrement dit la suite de terme général S défini par : L'étude d'une série peut passer par la recherche d'une écriture simplifiée des sommes finies en jeu et par la recherche éventuelle d'une limite finie quand n tend vers l'infini.
Prolongement analytiqueEn analyse complexe, la théorie du prolongement analytique détaille l'ensemble des propriétés et techniques relatives au prolongement des fonctions holomorphes (ou analytiques). Elle considère d'abord la question du prolongement dans le plan complexe. Puis elle aborde des formes plus générales d'extension qui permettent de prendre en compte les singularités et les complications topologiques qui les accompagnent. La théorie fait alors intervenir soit le concept assez ancien et peu opérant de fonction multiforme, soit le concept plus puissant de surface de Riemann.