Singular solutionA singular solution ys(x) of an ordinary differential equation is a solution that is singular or one for which the initial value problem (also called the Cauchy problem by some authors) fails to have a unique solution at some point on the solution. The set on which a solution is singular may be as small as a single point or as large as the full real line. Solutions which are singular in the sense that the initial value problem fails to have a unique solution need not be singular functions.
Parité d'une fonctionEn mathématiques, la parité d'une fonction d'une variable réelle, complexe ou vectorielle est une propriété qui requiert d'abord la symétrie du domaine de définition par rapport à l'origine, puis s'exprime par l'une ou l'autre des relations suivantes : fonction paire : pour tout x du domaine de définition, f (−x) = f (x) ; fonction impaire : pour tout x du domaine de définition, f (−x) = −f (x).
Correlation functionA correlation function is a function that gives the statistical correlation between random variables, contingent on the spatial or temporal distance between those variables. If one considers the correlation function between random variables representing the same quantity measured at two different points, then this is often referred to as an autocorrelation function, which is made up of autocorrelations.
Multi-indiceEn mathématiques, les multi-indices généralisent la notion d'indice entier en permettant d'envisager plusieurs variables entières pour une indexation. L'utilisation des multi-indices a pour but de simplifier les formules qu'on rencontre dans le calcul à plusieurs variables, que ce soit pour le calcul polynomial ou en analyse vectorielle. Un multi-indice de taille n est un vecteur à coefficients entiers positifs.
Théorème de Cauchy-LipschitzEn mathématiques et plus précisément en analyse, le théorème de Cauchy-Lipschitz, appelé également théorème de Picard-Lindelöf ou théorème d'existence de Picard, concerne les solutions d'une équation différentielle. Sous certaines hypothèses de régularité de la fonction définissant l'équation, le théorème garantit l'existence d'une solution répondant à une condition initiale dite de Cauchy et l'unicité d'une solution maximale. Certaines lois physiques, comme le principe fondamental de la dynamique, se traduisent par des équations différentielles vérifiant les hypothèses du théorème.
D'Alembert's equationIn mathematics, d'Alembert's equation is a first order nonlinear ordinary differential equation, named after the French mathematician Jean le Rond d'Alembert. The equation reads as where . After differentiating once, and rearranging we have The above equation is linear. When , d'Alembert's equation is reduced to Clairaut's equation.
Méthode de FrobeniusEn analyse, la méthode de Frobenius, du nom du mathématicien allemand Ferdinand Georg Frobenius, est une technique d'obtention du développement en série entière des solutions d'une équation différentielle linéaire de la forme : la variable z étant en général complexe, au voisinage du point z = a, sous réserve que p(z) et q(z) soient analytiques, ou possèdent un point singulier dit régulier en ce point.
NablaNabla, noté ou selon les conventions utilisées, est un symbole mathématique pouvant aussi bien désigner le gradient d'une fonction en analyse vectorielle qu'une connexion de Koszul en géométrie différentielle. Les deux notions sont reliées, ce qui explique l'utilisation d'un même symbole. En physique, il est utilisé en dimension 3 pour représenter aisément plusieurs opérateurs vectoriels, couramment utilisés en électromagnétisme et en dynamique des fluides.
Variété (géométrie)En mathématiques, et plus particulièrement en géométrie, la notion de variété peut être appréhendée intuitivement comme la généralisation de la classification qui établit qu'une courbe est une variété de dimension 1 et une surface est une variété de dimension 2. Une variété de dimension n, où n désigne un entier naturel, est un espace topologique localement euclidien, c'est-à-dire dans lequel tout point appartient à une région qui s'apparente à un tel espace.
Transformation de LaplaceEn mathématiques, la transformation de Laplace est une transformation intégrale qui à une fonction f — définie sur les réels positifs et à valeurs réelles — associe une nouvelle fonction F — définie sur les complexes et à valeurs complexes — dite transformée de Laplace de f. L'intérêt de la transformation de Laplace vient de la conjonction des deux faits suivants : De nombreuses opérations courantes sur la fonction originale f se traduisent par une opération algébrique sur la transformée F.