Terence TaoTerence Tao (sinogrammes traditionnels : 陶哲軒, sinogrammes simplifiés : 陶哲轩), né le à Adélaïde (Australie), est un mathématicien australien. Titulaire de nombreuses distinctions mathématiques parmi lesquelles la médaille Fields, il travaille principalement dans les domaines de l'analyse harmonique, des équations aux dérivées partielles, de la combinatoire, de la théorie analytique des nombres et de la théorie des représentations. De 1992 à 1996, il est doctorant à l'université de Princeton sous la direction d'Elias Stein.
Opérateur traceUn opérateur trace est un opérateur mathématique mis en œuvre dans des études d'existence et d'unicité de solutions aux problèmes avec conditions aux limites. L'opérateur trace permet aussi au moyen d'une formulation dans un espace de Sobolev d'étendre au bord d'un domaine la notion de restriction d'une fonction. Soit Ω un ouvert borné de l'espace euclidien R ∂Ω. Si u est une fonction C (ou simplement continue) sur l'adhérence de Ω, sa restriction est bien définie et continue sur ∂Ω.
Catégorie des modulesEn mathématiques, la catégorie des modules sur un monoïde R est une construction qui rend compte abstraitement des propriétés observées dans l'étude des modules sur un anneau, en les généralisant. L'étude de catégories de modules apparaît naturellement en théorie des représentations et en géométrie algébrique. Puisqu'un R-module est un espace vectoriel lorsque R est un corps commutatif, on peut dans un tel cas identifier la catégorie des modules sur R à la sur le corps R.
InvariantEn mathématiques, le mot invariant possède suivant le contexte différentes significations (non équivalentes). Il est utilisé aussi bien en géométrie et en topologie qu'en analyse et en algèbre. Si g : E→E est une application, un invariant de g est un point fixe, c'est-à-dire un élément x de E qui est sa propre image par g : Pour une telle application g, une partie P de E est dite : invariante point par point si tous ses éléments sont des points fixes ; globalement invariante par g, ou stable par g, si , c'est-à-dire : (cette propriété est moins forte que la précédente).
Matrix determinant lemmaIn mathematics, in particular linear algebra, the matrix determinant lemma computes the determinant of the sum of an invertible matrix A and the dyadic product, uvT, of a column vector u and a row vector vT. Suppose A is an invertible square matrix and u, v are column vectors. Then the matrix determinant lemma states that Here, uvT is the outer product of two vectors u and v. The theorem can also be stated in terms of the adjugate matrix of A: in which case it applies whether or not the square matrix A is invertible.
Courbe implicitevignette|402x402px| Ovales de Cassini :(1) a = 1,1 , c=1 (au dessus),(2) a = c = 1 (au milieu),(3) a = 1, c = 1,05 (au dessous)|gauche En mathématiques, une courbe implicite (en coordonnées cartésiennes) est une courbe plane définie par une équation implicite reliant les deux coordonnées x et y d'un point de . Par exemple, le cercle unité est défini par l'équation implicite . Dans le cas général, une courbe implicite est définie en coordonnées cartésiennes par une équation de la forme où F est une fonction de deux variables.
Sommet (géométrie)vignette|droite|Le sommet d'un angle est le point d'intersection où se réunissent deux segments de droites. En géométrie, un sommet est un point particulier d'une figure : un sommet d'un polygone, d'un polyèdre, ou plus généralement d'un polytope, est un 0-simplexe de celui-ci ; c'est l'extrémité d'au moins une arête (par analogie, on parle aussi de sommets en théorie des graphes) ; dans un polyèdre, en chaque sommet, convergent au moins trois faces et un nombre égal d'arêtes (voir aussi le théorème de Descartes-Euler, qui relie le nombre de sommets, d'arêtes et de faces d'un polyèdre) ; le sommet d'un angle est le point d'intersection des deux côtés de cet angle ; le sommet d'un cône est le point d'intersection de toutes les génératrices de ce cône.
Système d'équations linéairesEn mathématiques et particulièrement en algèbre linéaire, un système d'équations linéaires est un système d'équations constitué d'équations linéaires qui portent sur les mêmes inconnues. Par exemple : Le problème est de trouver les valeurs des inconnues , et qui satisfassent les trois équations simultanément. La résolution des systèmes d'équations linéaires appartient aux problèmes les plus anciens dans les mathématiques et ceux-ci apparaissent dans beaucoup de domaines, comme en traitement numérique du signal, en optimisation linéaire, ou dans l'approximation de problèmes non linéaires en analyse numérique.
Numérotation des bitsEn informatique, la numérotation des bits est la convention utilisée pour identifier les positions des bits dans un nombre binaire. droite|vignette|280x280px| La représentation binaire de la décimale 149, avec le LSB en surbrillance. Le LSB représente une valeur de 1. droite|vignette|280x280px| La représentation binaire non signée de la décimale 149, avec le MSB en surbrillance. Le MSB représente une valeur de 128. En informatique, le bit le moins significatif ( LSB ) est la position du bit dans un entier binaire représentant la place binaire 1 de l'entier.
Accouplement de WeilEn géométrie algébrique et en théorie des nombres, l'accouplement de Weil est une relation mathématique entre certains points d'une courbe elliptique, plus spécifiquement une application bilinéaire fonctorielle entre ses points de torsion. Cet accouplement est nommé en l'honneur du mathématicien français André Weil, qui en a systématisé l'étude. Il s'agit d'un outil important dans l'étude de ces courbes.