Identité trigonométrique pythagoricienneL'identité trigonométrique pythagoricienne exprime le théorème de Pythagore en termes de fonctions trigonométriques. Avec les formules de somme d'angles, c'est l'une des relations fondamentales entre les fonctions sinus et cosinus. Cette relation entre le sinus et le cosinus est parfois appelée l'identité trigonométrique fondamentale de Pythagore. Cette identité trigonométrique est donnée par la formule : où signifie .
Cohomologie des faisceauxLes groupes de cohomologie d'un faisceau de groupes abéliens sont les groupes de cohomologie du complexe de cochaines. Les groupes de cohomologie d'un faisceau de groupes abéliens sont les groupes de cohomologie du complexe de cochaines : où est une résolution injective du faisceau , et désigne le groupe abélien des sections globales de . A unique isomorphisme canonique près, ces groupes ne dépendent pas de la résolution injective choisie. Le zéroième groupe est canoniquement isomorphe à .
Fonction complètement multiplicativeEn théorie des nombres, les fonctions définies sur l'ensemble des entiers naturels non nuls et qui respectent les produits sont appelées fonctions complètement multiplicatives ou fonctions totalement multiplicatives. Elles font partie des fonctions multiplicatives, qui ne respectent que les produits de nombres premiers entre eux. En dehors de la théorie des nombres, le terme « fonction multiplicative » est souvent considéré comme synonyme de « fonction complètement multiplicative » tel que défini dans cet article.
Matrice orthogonaleUne matrice carrée A (n lignes, n colonnes) à coefficients réels est dite orthogonale si A A = I, où A est la matrice transposée de A et I est la matrice identité. Des exemples de matrices orthogonales sont les matrices de rotation, comme la matrice de rotation plane d'angle θ ou les matrices de permutation, comme Une matrice réelle A est orthogonale si et seulement si elle est inversible et son inverse est égale à sa transposée : A = A. Une matrice carrée est orthogonale si et seulement si ses vecteurs colonnes sont orthogonaux deux à deux et de norme 1.
Complément orthogonalEn mathématiques, plus précisément en algèbre linéaire et en analyse fonctionnelle, le complément orthogonal W d'un sous-espace vectoriel W d'un espace préhilbertien V est l'ensemble des vecteurs de V qui sont orthogonaux à tout vecteur de W, c'est-à-dire Le complément orthogonal est toujours un sous-espace vectoriel fermé. Pour un espace de Hilbert, d'après le théorème du supplémentaire orthogonal, le complément orthogonal du complément orthogonal de W est l'adhérence de W, soit File:Orthogonal1.
Simplicial homologyIn algebraic topology, simplicial homology is the sequence of homology groups of a simplicial complex. It formalizes the idea of the number of holes of a given dimension in the complex. This generalizes the number of connected components (the case of dimension 0). Simplicial homology arose as a way to study topological spaces whose building blocks are n-simplices, the n-dimensional analogs of triangles. This includes a point (0-simplex), a line segment (1-simplex), a triangle (2-simplex) and a tetrahedron (3-simplex).
Corps commutatifvignette|Corps commutatif (pour n premier) En mathématiques, un corps commutatif (parfois simplement appelé corps, voir plus bas, ou parfois appelé champ) est une des structures algébriques fondamentales de l'algèbre générale. C'est un ensemble muni de deux opérations binaires rendant possibles les additions, soustractions, multiplications et divisions. Plus précisément, un corps commutatif est un anneau commutatif dans lequel l'ensemble des éléments non nuls est un groupe commutatif pour la multiplication.
FactorielleEn mathématiques, la factorielle d'un entier naturel n est le produit des nombres entiers strictement positifs inférieurs ou égaux à n. Cette opération est notée avec un point d'exclamation, n!, ce qui se lit soit « factorielle de n », soit « factorielle n », soit « n factorielle ». Cette notation a été introduite en 1808 par Christian Kramp. Par exemple, la factorielle 10 exprime le nombre de combinaisons possibles de placement des 10 convives autour d'une table (on dit la permutation des convives).
Basic Linear Algebra SubprogramsBasic Linear Algebra Subprograms (BLAS) est un ensemble de fonctions standardisées (interface de programmation) réalisant des opérations de base de l'algèbre linéaire telles que des additions de vecteurs, des produits scalaires ou des multiplications de matrices. Ces fonctions ont d'abord été publiées en 1979 et sont utilisées dans des bibliothèques plus développées comme LAPACK.
Polynôme associé de LegendreEn mathématiques, un polynôme associé de Legendre, noté , est une solution particulière de l'équation générale de Legendre : laquelle n'a de solution régulière que sur l'intervalle [–1, 1] et si –m ≤ l ≤ m avec l et m entiers. Elle se réduit à l'équation différentielle de Legendre si m = 0. Cette fonction est un polynôme si m est un entier pair. Toutefois, l’appellation de « polynôme », bien qu'incorrecte, est quand même conservée dans le cas où m est un entier impair.