Mesure aléatoireEn théorie des probabilités, une mesure aléatoire est une détermination de mesure d'un élément aléatoire. Soit X un espace métrique séparable complet et la tribu de son ensemble de Borel. Une mesure de Borel μ sur X est finie si μ (A) < ∞ pour chaque ensemble A borélien limité. Soit l'espace de toutes les mesures finies sur . Soit un espace probabilisé. Alors, une mesure aléatoire des cartes de cet espace de probabilité à l'espace mesurable .
Processus de LévyEn théorie des probabilités, un processus de Lévy, nommé d'après le mathématicien français Paul Lévy, est un processus stochastique en temps continu, continu à droite limité à gauche (càdlàg), partant de 0, dont les accroissements sont stationnaires et indépendants (cette notion est expliquée ci-dessous). Les exemples les plus connus sont le processus de Wiener et le processus de Poisson.
Processus de Poisson composéUn processus de Poisson composé, nommé d'après le mathématicien français Siméon Denis Poisson, est un processus stochastique en temps continu à droite limité à gauche (Càdlàg). C'est en particulier un processus de Lévy. Un processus de Poisson composé est un processus aléatoire indexé par le temps qui s’écrit où est un processus de Poisson et est une suite de variables aléatoires indépendantes et identiquement distribuées et indépendantes de . Comme tout processus de Lévy, le processus de Poisson composé est à accroissements indépendants et à accroissements stationnaires.
Temps d'arrêtvignette|Temps d'impact et temps d'arrêt de trois échantillons de mouvement brownien. En théorie des probabilités, en particulier dans l'étude des processus stochastiques, un temps d'arrêt (également appelé temps d'arrêt optionnel, et correspondant à un temps de Markov ou moment de Markov défini) est une variable aléatoire dont la valeur est interprétée comme le moment auquel le comportement d'un processus stochastique donné présente un certain intérêt.
Générateur infinitésimalUn générateur infinitésimal est un outil de calcul stochastique, utilisé notamment pour les processus de Markov à temps continu. Soit le processus stochastique à temps continu et à états discrets. Soit la variable aléatoire désignant le temps que passe le processus à l'état avant de passer dans un autre état. Les chaînes de Markov à temps continu sont des processus stochastiques qui doivent (entre autres) vérifier la propriété de non-vieillissement :ce qui signifie que le temps qu'il reste à passer dans un état ne dépend pas du temps déjà passé dans cet état.
Doob's martingale convergence theoremsIn mathematics specifically, in the theory of stochastic processes Doob's martingale convergence theorems are a collection of results on the limits of supermartingales, named after the American mathematician Joseph L. Doob. Informally, the martingale convergence theorem typically refers to the result that any supermartingale satisfying a certain boundedness condition must converge.
Continuous stochastic processIn probability theory, a continuous stochastic process is a type of stochastic process that may be said to be "continuous" as a function of its "time" or index parameter. Continuity is a nice property for (the sample paths of) a process to have, since it implies that they are well-behaved in some sense, and, therefore, much easier to analyze. It is implicit here that the index of the stochastic process is a continuous variable.
Problème du collectionneur de vignettesvignette|Graphique qui donne, pour chaque nombre n de vignettes différentes (axe vertical), le nombre moyen E(T) de paquets de céréales à acheter pour les posséder toutes (axe horizontal). Le problème du collectionneur de vignettes ou du collectionneur de coupons (, CCP) est un problème de probabilités et de combinatoire qui consiste à estimer le nombre de paquets de céréales à acheter pour collectionner une série complète de vignettes, à raison d'une vignette offerte dans chaque paquet.
Pafnouti TchebychevPafnouti Lvovitch Tchebychev (en Пафнутий Львович Чебышёв), né le à Okatovo, près de Borovsk, et décédé le à Saint-Pétersbourg, est un mathématicien russe. Son nom a tout d'abord été transcrit en français Tchebychef et la forme Tchebycheff est aussi utilisée en français. Il est aussi transcrit Tschebyschef ou Tschebyscheff (formes allemandes), Chebyshov ou Chebyshev (formes anglo-saxonnes). Il est connu pour ses travaux dans les domaines des probabilités, des statistiques, et de la théorie des nombres.
Long-range dependenceLong-range dependence (LRD), also called long memory or long-range persistence, is a phenomenon that may arise in the analysis of spatial or time series data. It relates to the rate of decay of statistical dependence of two points with increasing time interval or spatial distance between the points. A phenomenon is usually considered to have long-range dependence if the dependence decays more slowly than an exponential decay, typically a power-like decay. LRD is often related to self-similar processes or fields.