Parité (arithmétique)En arithmétique modulaire, étudier la parité d'un entier, c'est déterminer si cet entier est ou non un multiple de deux. Un entier multiple de deux est un entier pair, les autres sont les entiers impairs. L'opposition pair/impair apparaît chez Épicharme (vers 490 av. J.-C.) : (Diogène Laërce, III, 11). Chez les pythagoriciens, la notion de limité est positive comme celle d'illimité négative, et le nombre impair est masculin, limité, positif, tandis que le nombre pair est féminin, illimité, négatif.
Plus grand commun diviseurEn arithmétique élémentaire, le plus grand commun diviseur ou PGCD de deux nombres entiers non nuls est le plus grand entier qui les divise simultanément. Par exemple, le PGCD de 20 et de 30 est 10, puisque leurs diviseurs communs sont 1, 2, 5 et 10. Cette notion s'étend aux entiers relatifs grâce aux propriétés de la division euclidienne. Elle se généralise aussi aux anneaux euclidiens comme l'anneau des polynômes sur un corps commutatif. La notion de PGCD peut être définie dans tout anneau commutatif.
Polynômethumb|Courbe représentative d'une fonction cubique. En mathématiques, un polynôme est une expression formée uniquement de produits et de sommes de constantes et d'indéterminées, habituellement notées X, Y, Z... Ces objets sont largement utilisés en pratique, ne serait-ce que parce qu'ils donnent localement une valeur approchée de toute fonction dérivable (voir l'article Développement limité) et permettent de représenter des formes lisses (voir l'article Courbe de Bézier, décrivant un cas particulier de fonction polynomiale).
Algèbre généraleL'algèbre générale, ou algèbre abstraite, est la branche des mathématiques qui porte principalement sur l'étude des structures algébriques et de leurs relations. L'appellation algèbre générale s'oppose à celle d'algèbre élémentaire ; cette dernière enseigne le calcul algébrique, c'est-à-dire les règles de manipulation des formules et des expressions algébriques. Historiquement, les structures algébriques sont apparues dans différents domaines des mathématiques, et n'y ont pas été étudiées séparément.
Notation polonaise inversethumb|Exemple d'utilisation de la pile en RPN La notation polonaise inverse (NPI) (en anglais RPN pour Reverse Polish Notation), également connue sous le nom de notation post-fixée, permet d'écrire de façon non ambiguë les formules arithmétiques sans utiliser de parenthèses. Dérivée de la notation polonaise présentée en 1924 par le mathématicien polonais Jan Łukasiewicz, elle s’en différencie par l’ordre des termes, les opérandes y étant présentés avant les opérateurs et non l’inverse.
Espace vectorielvignette|Dans un espace vectoriel, on peut additionner deux vecteurs. Par exemple, la somme du vecteur v (en bleu) et w (en rouge) est v + w. On peut aussi multiplier un vecteur, comme le vecteur w que l'on peut multiplier par 2, on obtient alors 2w et la somme devient v + 2w. En mathématiques, plus précisément en algèbre linéaire, un espace vectoriel est un ensemble d'objets, appelés vecteurs, que l'on peut additionner entre eux, et que l'on peut multiplier par un scalaire (pour les étirer ou les rétrécir, les tourner, etc.
Vecteur euclidienEn mathématiques, et plus précisément en géométrie euclidienne, un vecteur euclidien est un objet géométrique possédant une direction, un sens et une norme. On l'utilise par exemple en physique et en ingénierie pour modéliser une force. On parle aussi parfois de vecteur géométrique dans le plan euclidien (deux dimensions) et de vecteur spatial dans l'espace à trois dimensions. Vecteur#HistoireVecteur En physique et en ingénierie, on travaille souvent dans l'espace euclidien.
Système hexadécimalLe système hexadécimal est un système de numération positionnel en base 16. Il utilise ainsi 16 symboles, en général les chiffres arabes pour les dix premiers chiffres et les lettres A à F pour les six suivants (en majuscule ou minuscule). Le système hexadécimal est utilisé notamment en électronique numérique et en informatique car il est particulièrement commode et permet un compromis entre le code binaire des machines et une base de numération pratique à utiliser pour les ingénieurs.
Pourcentagethumb|upright=0.5|signe pour cent, %. Le pourcentage d'une partie d'un ensemble, ou d'un système physique, est le rapport d'une mesure (effectif ou grandeur extensive) de cette partie à la mesure correspondante de l'ensemble total (ou du système physique), exprimé sous la forme d'une fraction de cent. Le pourcentage est donc un nombre sans dimension (un nombre pur), mais pour en rappeler l'origine on le fait généralement suivre du signe « % », ou parfois de « /100 », de « pour cent » ou de l'abréviation « p.
AritéEn mathématiques, l'arité d'une fonction, ou opération, est le nombre d'arguments ou d'opérandes qu'elle requiert. Une fonction ou un opérateur peut donc être décrits comme unaires, binaires, ternaires, etc. Des termes comme 7-aire ou n-aire sont aussi utilisés. L'addition de deux nombres, par exemple, est une fonction binaire, ou opération binaire. La fonction inverse, qui associe à un élément son inverse, est une fonction unaire. En calcul propositionnel, on considère aussi l'arité des connecteurs qui sont des fonctions des booléens dans un booléen.