Groupe unitaireEn mathématiques, le groupe unitaire de degré n sur un corps K relativement à un anti automorphisme involutif (cf. Algèbre involutive) σ de K (par exemple K le corps des nombres complexes et σ la conjugaison) est le groupe des matrices carrées A d'ordre n à coefficients dans K, qui sont unitaires pour σ, c'est-à-dire telles Aσ(tA) = In. Plus généralement, on peut définir le groupe unitaire d'une forme hermitienne ou antihermitienne non dégénérée φ sur un espace vectoriel sur un corps comme étant le groupe des éléments f de GL(E) tels que φ(f(x), f(y)) = φ(x, y) quels que soient les vecteurs x et y de E.
Projective linear groupIn mathematics, especially in the group theoretic area of algebra, the projective linear group (also known as the projective general linear group or PGL) is the induced action of the general linear group of a vector space V on the associated projective space P(V). Explicitly, the projective linear group is the quotient group PGL(V) = GL(V)/Z(V) where GL(V) is the general linear group of V and Z(V) is the subgroup of all nonzero scalar transformations of V; these are quotiented out because they act trivially on the projective space and they form the kernel of the action, and the notation "Z" reflects that the scalar transformations form the center of the general linear group.
Groupe de LorentzLe groupe de Lorentz est le groupe mathématique constitué par l'ensemble des transformations de Lorentz de l'espace de Minkowski. Les formules mathématiques : des lois de la cinématique de la relativité restreinte ; des équations de champ de Maxwell dans la théorie de électromagnétisme ; de l'équation de Dirac dans la théorie de l'électron sont toutes invariantes sous les transformations de Lorentz. En conséquence, le groupe de Lorentz exprimerait la symétrie fondamentale de plusieurs lois de la nature.
Linear groupIn mathematics, a matrix group is a group G consisting of invertible matrices over a specified field K, with the operation of matrix multiplication. A linear group is a group that is isomorphic to a matrix group (that is, admitting a faithful, finite-dimensional representation over K). Any finite group is linear, because it can be realized by permutation matrices using Cayley's theorem. Among infinite groups, linear groups form an interesting and tractable class.
Groupe général linéaireEn mathématiques, le groupe général linéaire — ou groupe linéaire — de degré n d’un corps commutatif K (ou plus généralement d'un anneau commutatif unifère) est le groupe des matrices inversibles de taille n à coefficients dans K, muni du produit matriciel. On le note GL(K) ou GL(n, K) et il représente les automorphismes de l’espace vectoriel K. Ce groupe est non abélien dès lors que n > 1. Lorsque K est un corps commutatif, l’ensemble GL(n, K) est en outre un ouvert pour la topologie de Zariski.
Sous-groupe compact maximalEn mathématiques, un sous-groupe compact maximal K d'un groupe topologique G est un sous-groupe K qui est un espace compact, dans la topologie du sous-espace, et maximal parmi ces sous-groupes. Les sous-groupes compacts maximaux jouent un rôle important dans la classification des groupes de Lie et en particulier des groupes de Lie semi-simples. Les sous-groupes compacts maximaux de groupes Lie ne sont pas en général unique, mais sont unique à conjugaison près - ils sont essentiellement uniques.
Groupe symplectiqueEn mathématiques, le terme groupe symplectique est utilisé pour désigner deux familles différentes de groupes linéaires. On les note Sp(2n, K) et Sp(n), ce dernier étant parfois nommé groupe compact symplectique pour le distinguer du premier. Cette notation ne fait pas l’unanimité et certains auteurs en utilisent d’autres, différant généralement d’un facteur 2. La notation utilisée dans cet article est en rapport avec la taille des matrices représentant les groupes.