Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la modélisation du manteau neigeux, les avertissements d'avalanche, la protection des glaciers, les effets du changement climatique et les phénomènes de transport de la neige.
Explore la gestion de la demande, les méthodes de prévision, l'effet bullwhip, l'impact de l'industrie horlogère suisse et les biais cognitifs dans les affaires.
Couvre les modèles ARMA pour la prévision des séries chronologiques, en discutant des implications, des propriétés des erreurs de prévision, des défis avec les prédictions et des modèles de covariance.
Explore les propriétés stochastiques et la modélisation des séries chronologiques, couvrant l'autocovariance, la stationnarité, la densité spectrale, l'estimation, la prévision, les modèles ARCH et la modélisation multivariée.
Explore l'estimation, la prévision et la comparaison de modèles dans l'analyse de séries chronologiques à l'aide d'exemples de données réelles pour motiver l'étude.
Explore Vector Autoregression pour la modélisation de séries temporelles à valeur vectorielle, couvrant la stabilité, les polynômes caractéristiques inverses, les équations Yule-Walker et les autocorrelations.