Fonction hyperboliqueEn mathématiques, on appelle fonctions hyperboliques les fonctions cosinus hyperbolique, sinus hyperbolique et tangente hyperbolique. Les noms « sinus », « cosinus » et « tangente » proviennent de leur ressemblance avec les fonctions trigonométriques (dites « circulaires » car en relation avec le cercle unité x + y = 1) et le terme « hyperbolique » provient de leur relation avec l'hyperbole d'équation x – y = 1. Elles sont utilisées en analyse pour le calcul intégral, la résolution des équations différentielles mais aussi en géométrie hyperbolique.
Algèbre de BanachEn mathématiques, l'algèbre de Banach est une des structures fondamentales de l'analyse fonctionnelle, portant le nom du mathématicien polonais Stefan Banach (1892-1945). On explicite cette définition : une algèbre de Banach A sur le corps K = R ou C est un espace vectoriel normé complet sur K (on note la norme) muni d'une loi interne notée multiplicativement, telle que quels que soient x, y, z éléments de A et élément de K : (associativité) ; et (bilinéarité) ; (sous-multiplicativité).
Théorème de factorisation de WeierstrassEn mathématiques, et plus précisément en analyse, le théorème de factorisation de Weierstrass, nommé en l'honneur de Karl Weierstrass, affirme que les fonctions entières peuvent être représentées par un produit infini, appelé produit de Weierstrass, mettant en jeu leurs zéros. Du développement en série entière suivant pour u ∈ ]–1;1[ : on déduit que la fonction tronquée aux m premiers termes est sensiblement égale à 1 sur [–1 ; 1], sauf dans un voisinage de u = 1 où elle admet un zéro d'ordre 1.
Fonction d'erreurthumb|right|upright=1.4|Construction de la fonction d'erreur réelle. En mathématiques, la fonction d'erreur (aussi appelée fonction d'erreur de Gauss) est une fonction entière utilisée en analyse. Cette fonction se note erf et fait partie des fonctions spéciales. Elle est définie par : La fonction erf intervient régulièrement dans le domaine des probabilités et statistiques, ainsi que dans les problèmes de diffusion (de la chaleur ou de la matière).
Transformation de Fourierthumb|Portrait de Joseph Fourier. En mathématiques, plus précisément en analyse, la transformation de Fourier est une extension, pour les fonctions non périodiques, du développement en série de Fourier des fonctions périodiques. La transformation de Fourier associe à toute fonction intégrable définie sur R et à valeurs réelles ou complexes, une autre fonction sur R appelée transformée de Fourier dont la variable indépendante peut s'interpréter en physique comme la fréquence ou la pulsation.
Prolongement analytiqueEn analyse complexe, la théorie du prolongement analytique détaille l'ensemble des propriétés et techniques relatives au prolongement des fonctions holomorphes (ou analytiques). Elle considère d'abord la question du prolongement dans le plan complexe. Puis elle aborde des formes plus générales d'extension qui permettent de prendre en compte les singularités et les complications topologiques qui les accompagnent. La théorie fait alors intervenir soit le concept assez ancien et peu opérant de fonction multiforme, soit le concept plus puissant de surface de Riemann.
Exponentielle de base aEn analyse réelle, l'exponentielle de base est la fonction notée exp qui, à tout réel x, associe le réel a. Elle n'a de sens que pour un réel a strictement positif. Elle étend à l'ensemble des réels la fonction, définie sur l'ensemble des entiers naturels, qui à l'entier n associe a. C'est donc la version continue d'une suite géométrique. Elle s'exprime à l'aide des fonctions usuelles exponentielle et logarithme népérien sous la forme Elle peut être définie comme la seule fonction continue sur R, prenant la valeur a en 1 et transformant une somme en produit.
Fonction de BesselEn mathématiques, et plus précisément en analyse, les fonctions de Bessel, appelées aussi quelquefois fonctions cylindriques, découvertes par le mathématicien suisse Daniel Bernoulli, portent le nom du mathématicien allemand Friedrich Wilhelm Bessel. Bessel développa l'analyse de ces fonctions en 1816 dans le cadre de ses études du mouvement des planètes induit par l'interaction gravitationnelle, généralisant les découvertes antérieures de Bernoulli.